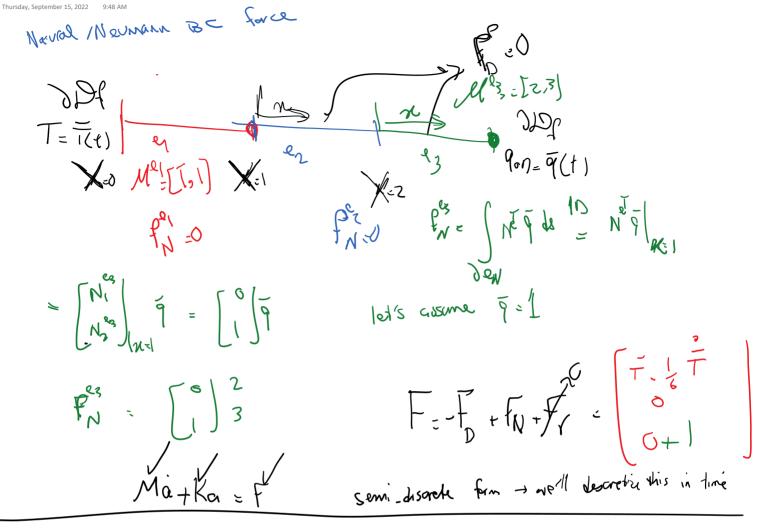
2022/09/15



Discontinuous Gakerkin formulation for heat conduction problem (one of many possible DG formulations)

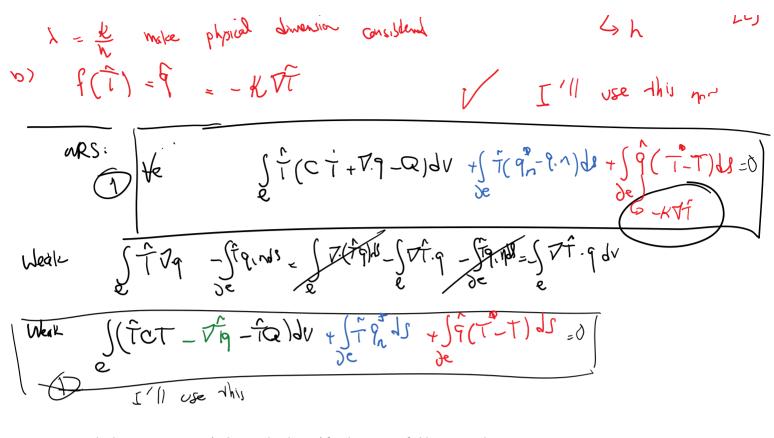
The domain Physic residuels CFEM
a)
$$R_1 = CT + V.q - Q$$
 inside D(
b) $R_2 = q - q \cdot n$ on DP
c) $R_4 = T - T$ on DP
solutions one only a priori in CFEM
Solutions for an e' only in CFEM
The Residuel is formed for an e' only
For exernand e
a) $R_1 = CT + V.q - Q$ in side O
b) $R_1 = q - q \cdot h$ on De the choice bowndary of showed
C) $R_4 = T + T$ on the choice bowndary of showed

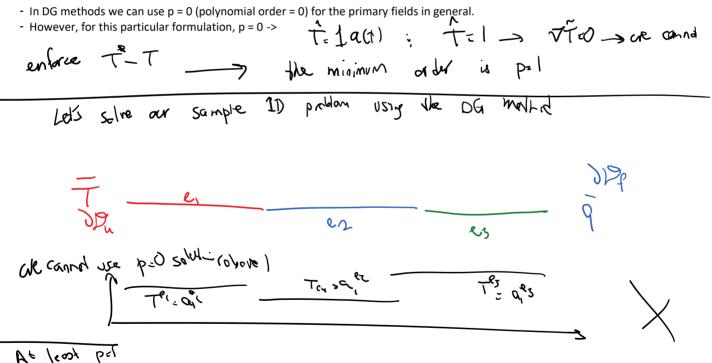
Pera

DG Page 1

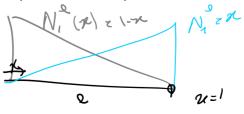
b) "T = T -T on De stie ville be edustied MEALLY
() Ru = T -T on De stie ville ville be edustied MEALLY
() = trigget or stre vielle

$$q_{1}(9) = trigget or stre vielle
 $q_{2}(9) = t_{1}(7, 7, 7, 7, 7)$ on det de side denuel
 $q_{2}(9) = t_{1}(7, 7, 7, 7, 7)$ on det
 $q_{2}(9) = t_{1}(7, 7, 7, 7, 7)$ on det
 $q_{2}(9) = t_{1}(7, 7, 7, 7, 7)$ on det
 $t_{2}(9) = t_{2}(7, 7, 7, 7, 7, 7)$ on det
 $t_{2}(9) = t_{2}(7, 7, 7, 7, 7, 7, 7)$ on det
 $t_{2}(1, 1, 2, 3, 7, 7, 7, 7, 7, 7)$ on det
 $t_{2}(1, 1, 2, 3, 7, 7, 7, 7, 7, 7)$ on det
 $t_{2}(1, 1, 2, 3, 7, 7, 7, 7, 7, 7)$ on det
 $t_{3}(1, 2, 3, 3, 7, 7, 7, 7, 7, 7)$ on det
 $t_{4}(1, 2, 3, 3, 7, 7, 7, 7, 7, 7)$ on det
 $t_{4}(1, 2, 3, 3, 7, 7, 7, 7, 7, 7)$ on det
 $t_{4}(1, 2, 3, 3, 7, 7, 7, 7, 7)$ on det
 $t_{4}(1, 2, 3, 3, 7, 7, 7, 7, 7)$ on det
 $t_{4}(1, 2, 3, 3, 7, 7, 7, 7, 7)$ on det
 $t_{4}(1, 2, 3, 3, 7, 7, 7, 7, 7)$ on det
 $t_{4}(1, 2, 3, 3, 7, 7, 7, 7, 7)$ on det
 $t_{4}(1, 2, 3, 3, 7, 7, 7, 7, 7)$ on det
 $t_{4}(1, 2, 3, 3, 7, 7, 7, 7)$ on det
 $t_{4}(1, 2, 3, 7, 7, 7, 7)$ on det
 $t_{4}(1, 2, 3, 7, 7, 7)$ on det
 $t_{4}(1, 2, 3, 7, 7)$ on det
 $t_{4}(1, 2, 3, 7, 7)$ on det
 $t_{4}(1, 2, 3, 7)$ on$$





We can use Continuous Finite Element-based shape functions to interpolate the solution



This approach is called "Nodal DG". I shared the book with you. Some advantages:

- Generally good conditioning of element matrices
- DOFs have physical meaning
- ... (simplifying some element boundary computation)

However, since there is no strong continuity constraint, we can use any basis for linear space

$$T(A) = Q(B)Q(A) + Q(A) + Q(A$$

We're going to plug in the values for T left and right and ${\sf q}$ left and right:

$$m^{e}\dot{a} + k^{e}\alpha - F(+ \left(j \right) + \left(j \right) + \left(j \right) + \left(- k \left(j \right) + k \right) + \left(- k \left(j \right) + \left(- k \left(j \right) + k \right) + \left(- k \left(j \right) + k \right) + \left(- k \left(j \right) + \left(- k \left(j \right) + k \right) + \left(- k \left(j \right) + k \right) + \left(- k \left(j \right) + \left(- k \left(j \right) + k \right) + \left(- k \left(j \right) + \left(- k \left(j \right) + k \right) + \left(- k \left(j \right) + k \right) + \left(- k \left(j \right) + \left($$

$$\begin{split} & \underset{R}{\operatorname{MR}} \qquad \underset{R}{\operatorname{MR}$$

System equation

$$CL \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{$$

$$CL \begin{bmatrix} 1 & 1/2 & 1$$