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ABSTRACT: Hydraulic fracturing is widely employed to stimulate oil and gas reservoirs to increase the productivity of these naturally
fissured rock domains. Different numerical techniques are available to examine how hydraulic fractures propagate. They are mainly
categorized into continuum and interface-based methods. Cohesive models are among the most effective class of interfacial approaches
representing crack surfaces as sharp material interfaces. In lieu of a traditional cohesive model, we have formulated and employed
an interfacial damage model that incorporates the processes of nucleation, growth and coalescence on the fracture surfaces. Utilizing
a dynamic adaptive meshing, we employed a Spacetime Discontinuous Galerkin (SDG) finite element method to simulate hydraulic
fracture propagation. Our SDG implementation adaptively aligns the element boundaries with crack-path trajectories that are obtained
as a part of the solution according to a crack growth criterion. Thus, this model does not suffer the mesh-dependent effects encountered
in most other numerical fracture models. Furthermore, no discontinuous features are introduced within the elements as opposed to
XFEM and generalized finite element methods. Adaptive mesh refinement in an area allows free nucleation, growth and branching of
cracks oriented arbitrarily in the domain without any mesh bias whereas a coarse mesh can be used in other regions of the domain to
utilize an efficient implementation. Presenting numerical examples, we performed a sensitivity analysis of some input variables such as
the magnitude of in-situ stress components, number and orientation of induced fractures is performed to demonstrate the effectiveness
of our approach in resolving hydraulic fracturing.

1 Introduction

Enhancing production from shale and other tight forma-
tions has become one of the main challenges in oil indus-
try. Since these formations have extremely low permeabil-
ity and low porosity, the technique of hydraulic fracturing
is widely employed as a treatment to increase production
rates. Hydraulic fracturing treatment being rapidly devel-
oped has changed the energy industry throughout the world.
Understanding how fractures initiate and propagate from
wellbores is necessary to efficiently perform such a costly
treatment. Wellbores are commonly perforated in wells
with cemented liners before hydraulic fracturing is carried
out. This approach is called the plug-and-perf stimulation
technique. Perforation plays the role of a fracture initially
induced to control crack initiation and its propagation direc-
tion into the reservoir. Utilizing perforations as single frac-
tures from the wellbore toward the reservoir can avoid mul-
tiple and reoriented fractures from a wellbore. A successful

treatment via hydraulic fracturing to get better propagation
pattern highly depends on different parameters including the
length and orientation of the perforations, the magnitude of
in-situ stress components known as stress anisotropy in the
plane fracturing occurs.

There have been many attempts to numerically capture
fracture propagation in tight formations during hydraulic
fracturing process [1]. The cracking process in rock is dis-
tinct from cracking of other materials, such as metal and
glass, in which it is not a sudden onset of new free surfaces,
but continuous forming and connecting micro-cracks. Be-
sides, hydraulic fracture propagation is governed by cou-
pling of fluid flow and crack faces, which makes it a very
complex problem. Numerical simulation is a useful tool to
understand the governing mechanisms in which the energy
is dissipated while the cracks are propagated in the reser-
voir. Several approaches mainly categorized into discrete
and continuum methods are available to address the chal-
lenges in a hydraulic fracturing simulation. Since rocks are



categorized as a type of granular materials, Discrete Ele-
ment Method can be possibly used for the crack propagation
study [2, 3]. Although much effort has been devoted to the
development of continuum-based damage model (CDM) for
rock in the recent years, there are a few studies in which
a CDM is employed in a hydraulic fracturing simulation
[4, 5]. Developing a continuum failure model for dynamic
fracture and post fracture responses of porous rocks, Sho-
jaei et.al. investigated the hydraulic fracture growth in a
reservoir rock [4]. They employed the model incorporat-
ing plasticity and damage mechanisms to study the effect of
injected pore fluid in development of fracture surfaces in a
hydraulically fractured rock.

Sharp discontinuities can be either implemented between
adjacent elements [6] or within elements, as in the eXtended
FEM [7, 8, 9], Generalized FEM [10, 11] or other meth-
ods with embedded strong discontinuities. The basic idea
of XFEM/GFEM is to use a partition of unity to build finite
element shape functions. Cohesive models are among the
most effective class of discrete methods representing crack
surfaces as sharp material interfaces between adjacent ele-
ments [12, 13]. The XFEM, which was proposed by Be-
lytschko and co-workers [7, 8, 9], has been widely used for
crack growth simulation. It has been used very successfully
to model cracks because the finite element mesh can be cre-
ated independent from the crack geometry, and in particu-
lar the domain does not have to be re-meshed as the crack
propagates. In the XFEM, the fracture is propagated inde-
pendently of the mesh structure by permitting it to cross the
elements. However, alleviating the drawbacks associated
with traditional approaches that require meshing cracked
surfaces and updating the mesh for a growing crack, the
XFEM has limitations in hydraulic fracturing simulations
such as not capturing crack branches which is probable in
a dynamics crack growth mechanism. Focusing on prop-
agating fractures with complex geometries, like those en-
countered in early stages of hydraulic fracturing, Gupta and
Duarte proposed a GFEM for the simulation of non-planar
3D hydraulic fractures [14]. In their proposed GFEM, the
representation of fracture surfaces is independent of the vol-
ume FE mesh and consequently, complex surface features
like sharp turns and kinks can be accurately represented
[14].

The unconventional gas reservoirs exhibit tremendous
amount of both small-scale and large-scale heterogeneity,
with pre-existing natural fractures/weak planes. Recently
some numerical research works have been carried out for
hydraulic fracturing in these naturally fractured formations.
Dahi-Taleghani and Olson used the XFEM in their two-
dimensional model and addressed these issues [15]. They
used critical energy release rate ratio as the criterion for
interaction between the hydraulic fracture and the natural
fractures [16]. Most hydraulic fracture models are based

on linear elastic fracture mechanics (LEFM) while a bet-
ter choice for fracture propagation is to utilize a cohesive
zone model. Some applications of cohesive zone models for
the analysis of hydraulic fractures include the work of Chen
et.al. [12], Carrier and Granet [13] and Mohammadnejad
and Khoei [17]. Mohammadnejad and Khoei employed the
XFEM for hydraulic fracture propagation by developing a
coupled numerical tool [17].

2 Spacetime Discontinuous Galerkin
FEM

2.1 Spacetime discretization

Meshing, which is discretization of the domain into ele-
ments with pairwise disjoint interiors, is an important part
of computational solutions in a crack propagation problem.
The efficiency of the solution technique with a desirable
accuracy highly depends on the number, size, polynomial
order, and distribution of elements in the mesh. Herein,
a spacetime discontinuous Galerkin (SDG) finite element
method utilizing the simultaneous discretization of both
space and time is developed to numerically simulate wave
propagation into a domain as a time-dependent phenomena
for mechanical stress in materials. Therefore, an efficient
mesh of the spacetime domain of interest is necessary to
secure a sufficiently accurate numerical solution for such
a hyperbolic partial differential equations (PDEs) in space
and time variables.

In this study, a specialized algorithm developed by Abedi
et.al. to mesh directly in spacetime is used to address an
efficient SDG solution [18]. Their advancing front algo-
rithm called Tent Pitcher incrementally constructs an un-
structured spacetime mesh by considering certain geomet-
ric constraints. They showed how to adapt the mesh reso-
lution to numerical error estimates, in 2d×time. A signifi-
cant feature of the utilized algorithm is to adaptively refine
and coarsen the mesh in spacetime that improves the over-
all efficiency of the simulation in solving wave propagation
particularly with a nonlinear physics such as fracture.

This SDG solver works with unstructured causal space-
time meshes as shown in Figure 1 as a simple 1d×time non-
causal mesh. The inclined arrows indicate the characteristic
directions where it is assumed the maximum wave speed is
equal for the left- and right-moving waves. We impose a
causality constraint on all facets in the spacetime mesh en-
abling a local solution scheme. The asymmetric causality
dependency generates a partial element ordering by which
the global solution can be computed locally, one element
at a time. For example, the solution of element C depends
only on the solution of earlier elements A and B because the
inflow facets shown in red are shallower than the maximum
wave speed. The solutions of A and B, however, do not de-



Figure 1: SDG local solution scheme on a causal spacetime
mesh

pend on C. The level-1 elements depend only on initial con-
ditions and boundary conditions for the elements D and E.
The level-1 element solutions can be computed locally and
in parallel. Thus, causal SDG meshes enable asynchronous,
element-by-element solutions with linear complexity.

In practice, we replace the individual elements with small
clusters of simplex elements called patches, where only the
exterior patch facets need to be causal; see Figure 2 for
clusters of tetrahedral elements in 2d×time. We implement
an advancing-front meshing/solution procedure. The Tent
Pitcher algorithm [6] generates a sequence of causal space-
time patches, and we solve each one as soon as it is gen-
erated. Using an advancing-front procedure, in each step
the Tent Pitcher algorithm advances in time a vertex in the
front mesh to define a local front update; the causality con-
straint limits the maximum time increment ∆t at the ver-
tex. A small mesh of spacetime simplices covers the region
between the old and new fronts to form a new patch. We
solve new patches as local problems and update the current
front, until the entire spacetime analysis domain is solved.
This feature contrasts our SDG method with other com-
mon spacetime DG methods where elements arranged in
spacetime slabs are coupled through their noncausal facets
and solved simultaneously. For more details of the SDG
formulation for linear elastodynamics see [18]. As men-
tioned before, superior performance in resolving shocks and
other sharp solution features, element level balance proper-
ties, support for nonconforming meshes and arbitrary spa-
tial polynomial order, that lead to very flexible hp-adaptive
schemes, are a few of the advantages of DG methods over
continuous FEMs.

Figure 2: Tent pitching in spacetime

2.2 Adaptive spacetime meshing

The local spacetime structure of the SDG solver enables a
powerful approach to dynamic adaptive meshing. An error
indicator is computed for each new patch solution. If the
error is acceptable, the patch solution is accepted and stored
for use as inflow data for subsequent patches. If the error
is too large, the patch is rejected and the solver passes a de-
mand for mesh refinement to the meshing code. If the error
is too small, the patch is accepted and a request for sub-
sequent mesh coarsening is issued. Adaptive Tent Pitcher
responds to refinement demands by refining the front mesh
before restarting the patch-generation procedure. This gen-
erates corresponding refinement in the spacetime mesh. In
2d×time, we implement common adaptive meshing opera-
tions, such as vertex-deletion, edge flips, and vertex motion,
as special spacetime patches (see Figure 3). This contrasts
with the instantaneous mesh modifications applied between
time steps in conventional adaptive meshing algorithms that
require expensive and error-prone projections of the solu-
tion from the old mesh onto the new mesh. Since the spe-
cial SDG patches conform to both the old front mesh on
their inflow facets and to the new front mesh on their out-
flow facets, no solution projection is needed, and high-order
accuracy is preserved.

We can achieve strong, dynamic refinement because the
adaptive meshing and the patch solutions are local opera-
tions that share the same granularity within the SDG algo-
rithm. This contrasts with conventional adaptive methods,
where remeshing is typically a global operation that is only
applied after several time steps have been computed. SDG
adaptive meshing closely tracks dynamic solution features,
such as the trajectories of multiple wavefronts in a crack-tip
wave scattering model.

The use of adaptive meshing allows free nucleation and
extension of fracture interfaces. Hence, the fracture inter-
faces can be aligned with crack path trajectories that are
located and oriented arbitrarily in the domain[6]. Further-
more, adaptive meshing also enables mesh refinement in
regions with complex features such as crack nucleation,
growth, and branching whereas a coarse mesh can be used in
other regions of the domain to make the implementation ef-
ficient. The key feature here is the local spacetime structure
of the SDG solver which makes dynamic adaptive mesh-
ing possible as a powerful technique. An error indicator is



(a) Vertex deletion (b) Edge flip (c) Inclined tent pole

Figure 3: Adaptive meshing operations via special space-
time patches (top) vs. conventional 2d remeshing operations
(bottom)

computed for each new patch solution. If the error is ac-
ceptable, the patch solution is accepted and stored for use
as inflow data for subsequent patches. If the error is too
large, the patch is rejected and the solver passes a demand
for mesh refinement to the meshing code. If the error is too
small, the patch is accepted and a request for subsequent
mesh coarsening is issued. The adaptive Tent Pitcher soft-
ware responds to refinement demands by refining the front
mesh before restarting the patch-generation procedure. This
produces corresponding refinement in the spacetime mesh.

Some distinct aspects of the SDG method are:

• Local-effect adaptivity: Rejection of elements with
large error does not require reanalysis of the entire do-
main as needed for implicit time marching methods.

• Arbitrary order and size in time: The spatial ele-
ment size adjustment in h-adaptive schemes is a ma-
jor source of geometry-induced stiffness, which can
drastically affect the performance of time marching
schemes. To avoid temporal resolution errors dominat-
ing the overall accuracy and efficiency, the ability to
achieve arbitrary and spatially variant temporal order
of accuracy is highly desired in adaptive simulations.

• Spacetime adaptive operations: Transient problems of-
ten involve sharp moving fronts in spacetime. While
the majority of adaptive methods are concerned with
adjusting the spatial mesh at the initial time a fully ef-
ficient adaptive scheme requires simultaneous adaptive
operations in spacetime.

2.3 Adaptive strategy for tracking cracks

Four commonly-employed crack tracking strategies are il-
lustrated in Figure 4. These are based on the Finite Element
Method as the widely-used numerical technique applied to
fracture problems. By using a continuum damage model

Figure 4: Discretization schemes for tracking cracks in the
FEM

(i.e. Figure 4(a)), the crack can be tracked with an appro-
priate mesh size in damaged regions to capture a localized
path. However, it does not capture physical crack faces and
can only represent a macro-cracking path along with its as-
sociated degradation caused by cracking. Therefore, this
approach is not appropriate for hydraulic fracturing. The
other possibility for the crack tracking is to utilize a fixed
discretization (i.e. Figure 4(b)) while interface elements are
inserted on a predefined crack path along which the crack
is assumed to propagate when a load is applied. Obviously,
handling of mixed mode loadings, where the crack path is
not predictable, is challenging and particularly the crack
path speed with a fixed mesh is not reliable. A usual al-
ternative to the fixed mesh strategy is the use of adaptive
meshing scheme as illustrated in Figure 4(c) in which the
evolution of the crack path is successfully followed. Simu-
lating crack growth using the classical FEM is quite difficult
because the topology of the domain changes continuously.
On the other hand, allowing to simulate arbitrary discon-
tinuity with a fixed mesh, the XFEM method (i.e. Figure
4(d)) follows a crack path within the elements and in par-
ticular the domain does not have to be re-meshed as the
crack propagates. Although the XFEM alleviates the prob-
lem of modeling arbitrary cracks and discontinuities of the
finite element mesh, the available XFEM implementations
are mostly limited to the linear elastic fracture mechanics



Figure 5: Cohesive process zone and the crack propagation
mechanism

(LEFM) framework. Due to many technical issues, it is
quite difficult to close the gap between complex LEFM and
the study of cracks considering nonlinear mechanisms such
as plasticity and damage.

Figure 5 illustrates an active, fully developed fracture
process zone in the employed interfacial-damage cohesive
model. The cohesive surface tip (CST) is the leading edge of
the cohesive process zone where interfacial damage begins
to accumulate from D = 0 until complete damage, D = 1,
is attained at the trailing edge of the process zone.

The crack propagation criterion is tested every time a
patch is pitched over an active CST vertex, such as A in
Figure 6. Vertex A may be the tip of an advancing crack as
illustrated in the figure or be a newly nucleated CST. In gen-
eral, no two crack edges around a common vertex are per-
mitted to have a relative angle smaller than a user-specified
tolerance in the SDG implementation; otherwise, the acute
angle generated may introduce errors in the discrete finite
element solution. The occurrence of such instances, other
than the aforementioned shielding for the crack propaga-
tion, is very infrequent and is limited to cases where one
crack collides with another crack on its trailing edges or at
its CST.

An active CST will be examined for propagation direc-
tions every time the vertex is advanced in time by pitch-
ing a tent. Once the propagation criterion yields a nonzero
number of propagation directions, the vertex is no longer in-
spected for crack growth. The requested crack paths on the
vertex are in turn achieved by manipulations to the space
mesh as shown below. The CST flag of the vertex is inacti-
vated after all the requested propagation paths are achieved.

Figure 6(a) illustrates a patch, where the CST vertex A
is erected to A′. As demonstrated, the propagation criterion
yields one extension direction after the patch is solved. Typ-
ically, the propagation angle is not aligned with any of the
element boundaries. Herein, propagation direction passes
through element e. We manipulate the space mesh in a way

Figure 6: Extension of a crack in the space mesh through
refinement and tent pitching operations



that the edge, r, between the two triangles e1, e2 connected
to the CST is aligned with the propagation direction. There
are two approaches to introduce an element boundary along
the crack direction.

In Figure 6(a), the vertex E is inserted on the edge BC
such that AE is aligned with the crack direction. Subse-
quently, the space element e is subdivided to elements e1
and e2. This operation is similar to the edge bisection pro-
cedure employed to refine the element e. The refinement in
element e will instigate a series of refinements according to
the newest-vertex bisection algorithm on neighboring ele-
ment in the space mesh to preserve the conformal structure
of the space mesh. For example, the chain for refinement is
propagated to three elements in the figure.

Figure 6(b) shows a situation where the direction of the
element boundary AB is close to the requested crack di-
rection, l. We align the edge AB with the crack direction
by moving the vertex B to a point on line l. This can be
achieved by erecting a tilted tent pole on vertex B such that
the top vertex B′ lies on line l. If the patch is accepted, we
update the front and activate the cohesive flag of the edge
AB′. As opposed to previous approach, the propagation
direction is not achieved immediately and an intermediate
tent pitching is involved. In fact, the move of the vertex B
to line l may not be achieved in one step. In many instances
the process may take several pitches on vertex B and sub-
sequent tent pole tops; the tent pole top gets closer to the
line l each time a patch is erected, until the element edge is
aligned with the crack.

3 Numerical Results

In this section, two examples are presented to demonstrate
the performance of our SDG approach for 2D simulations
of hydraulic fracturing. The focus of the applications dis-
cussed herein is on the shale gas reservoirs in which frac-
turing occurs in depths with low permeability. However for
such a very tight formation, the leak-off of fluid across crack
faces can be neglected. Besides, low viscosity fracturing
fluids such as treated water is common nowadays in the hy-
draulic fracturing. In these conditions, the fluid pressure
along fracture faces, specifically near the wellbore can be
treated as a nearly constant due to the high in-situ stresses
acting as effective confining pressures in the deep reservoirs
and the low fluid viscosity. Utilizing analytical solutions for
this problem, references [19, 20] showed that considering
this behavior is reasonable. Allowing that, it is also practi-
cal to deduce that the fluid and fracture fronts occur simul-
taneously and are coincident, which means the fluid lag is
negligible. It should be noted that the size of the fluid lag
is inversely proportional to σ30 , in which σ0 is the far field
confining stress [21].

As the first problem, we simulate a single fracture whose
faces are subjected to an internal pressure. This kind of
simulation has been widely covered by many researchers in
the literature. By the way, in order to isolate the well from
undesirable regions and to consider some operational con-
siderations in the field along with stability concerns, well-
bores usually are cased and then perforated in the reser-
voir with cemented liners where the plug-and-perf stimu-
lation technique is commonly employed. Accordingly it is
more practical to perform the hydraulic fracture operation
through perforations. Therefore, the next problem followed
in this paper is devoted to the hydraulic fracturing from the
oriented perforations. In the following, the maximum and
minimum compressive stresses are denoted as σH and σh,
respectively.

3.1 Single pressurized fracture

A pressurized crack with vertical orientation in a domain,
which is subjected to far field confining stresses as bi-axial
tractions, is considered in the following examination. As
mentioned above, a constant pressure is applied to the crack
faces while fractures propagate. The initial crack has a
half length of 0.02 m and is subjected to confining in-situ
stresses: σh = 2.425 MPa and σH = 4.85 MPa. The initial
fracture is oriented 90o with respect to the horizontal plane
which is parallel to the direction of σH . The material prop-
erties are: Young’s modulusE = 20 GPa and Poisson’s ratio
v = 0.2. The fluid pressure is assumed to increase in time
as a dynamic loading from a stabilizing constant pressure
being applied as a static load. The crack patterns obtained
for two different time steps are illustrated in Figure 7. The
crack propagates rather in a straight line before it branches
ahead of the initial crack tip.

3.2 Hydraulic fracturing from oriented perfora-
tions

Perforations in a hydraulic fracturing treatment play the role
of a transmission channel between the wellbore and the
reservoir. In fact, a perforation may serve as an initial frac-
ture to help with crack nucleation and slightly force prop-
agation direction to perform an efficient treatment. There-
fore, perforations are important in the complex fracture ge-
ometries around wellbore. Having a single fracture initiated
from a wellbore is one of the main objectives of creating the
perforations as a technique to avoid multiple T-shaped and
reoriented fractures. However, the success of stimulation
treatment through perforations depends on several parame-
ters including its length, diameter along with permeability
of the rock around the perforation. The enhanced perme-
ability of the rock around the wellbore controls recovery
flow through a perforation. By shortly reviewing effective



Figure 7: Crack propagation on the space mesh in single
pressurized fracture

Figure 8: Crack propagation on the space mesh in the three-
perforation case

Figure 9: Crack propagation on the space mesh in the four-
perforation case

parameters, which are important for a perforation design,
the function of perforation in hydraulic fracturing is dis-
cussed in the following. Perforation phasing, which is the
angle between the two successive perforations, is another
important parameter affecting production rate and needs to
be carefully assessed at its design stage. Among many pos-
sible angles, common perforation phasing angles are 60o,
90o, 120o and 180o. Herein, one application with three dif-
ferent phasing angles of 60o, 90o, 120o are considered.

To study the efficacy of perforation patterns, we are look-
ing into three scenarios. Figure 8 shows three perforation
points at 0, 120, and 240 degrees around the wellbore. As
expected, the first fracture starts to emanate from the perfo-
ration placed at 0 degrees because the minimum horizontal
stress is perpendicular to this fracture. The continuation of
fracturing orders in Figure 8 does not show any preference
in terms of starting from which perforation, therefore, they
continue to grow almost simultaneously. Since all the three
fractures, eventually grow and exhibit the most ramified pat-
tern, we conclude that this pattern of three perforations is an
efficient pattern to start hydraulic fracturing.

Figure 9 shows the case of four perforations equally
phased around the casing. Similar to previous case, fracture
creation starts at the perforations placed at 0 and 180 de-



Figure 10: Crack propagation on the space mesh in the six-
perforation case

grees due to the direction of the minimum in-situ stress be-
ing normal to these two fractures. After they open and grow
longer, the other two fractures at 90 and 270 degrees obtain
the potential to grow simultaneously. Figure 10 shows an in-
teresting result that confirms the two previous patterns and
justifies the use of a maximum number of four perforations
for hydraulic fracture creation. The fracture stage in Figure
10(b), shows that the first two fractures that start to grow
are the ones at 0 and 180 degrees, after that, since there is no
preference of growth (except for the material strength which
due to random distribution of properties, in this case seems
to be lower on the right half) between the set of two perfora-
tions on the right and two perforations on the left quadrants,
the ones on the right start to grow first. This result indicates
that in this case of six perforations, two perforations remain
unused and we recommend a maximum of four perforations
in cross section of casing to obtain the best fracture creation
results.

4 Conclusions

One of the most important applications of hydraulic frac-
turing nowadays is to improve the recovery of unconven-
tional hydrocarbon reservoirs. Having an appropriate frac-
ture propagation model in rocks is a crucial issue for a hy-
draulic fracture design. Many approaches have been de-
veloped to efficiently perform crack growth simulations,
which are mostly based on either efficient remeshing tech-
niques or the XFEM/GFEM employing fixed meshes, but
these are mainly limited to the linear elastic fracture me-
chanics (LEFM) framework. In this paper, an interfacial
damage model implemented in a Spacetime Discontinuous
Galerkin (SDG) framework is utilized to simulate nucle-
ation and then propagation of hydraulically induced frac-
tures in an oil reservoir. The SDG method offers many
advantages over conventional and extended/generalized fi-
nite element methods including dynamic adaptive meshing,
interface tracking, and element-wise conservation. To fa-

cilitate crack propagation in any arbitrary direction we use
the SDGś powerful adaptive meshing capabilities to align
cracks with inter-element boundaries; Unlike X-FEM meth-
ods no special discontinuity functions are required.

Although hydraulic fracturing has been employed for
several decades in oil industry, a thorough understanding of
the interaction between induced hydraulic fractures and pre-
existing natural fractures is still challenging. Our approach
is applicable to hydraulic fracturing where an induced major
crack propagates and intersects natural fractures which in
turn are hydraulically loaded and extended to intersect other
fissures resulting in a complicated fracture network. Fur-
thermore, incorporation of macro-micro crack interactions
can explain discrepancies for tracking efficiency between
real productivity and computational estimations. The future
work focuses on utilizing the developed interfacial damage
model in capturing the interactions between hydraulically
induced fractures and natural fractures.

Besides, stochastic distribution of material defects plays a
critical role in fracture processes, particularly in brittle ma-
terials such as rocks. The failure initiated at these weaker
sites is often accelerated through increasing stress concen-
trations induced by initial fracture growth and local inhomo-
geneity. The energy absorption and stress release through
these local features shields surrounding regions and results
in a very non-uniform failure pattern at mesoscale. De-
terministic continuum models treating the material as per-
fectly homogeneous predict simultaneous failures at regions
of high stress, which is not physical. Unfortunately, these
problems are somehow shadowed in discrete setting due
to slight inhomogeneities implied by numerical errors and
often finite loci where cracks can propagate. To address
this issue at the continuum level, a probabilistic nucleation
model can be devised where cracks nucleate from defects
that are randomly distributed in the bulk. This topic can
also be the future continuation of this stream of research.
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