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ABSTRACT: We propose an interfacial contact/damage model for simulating dynamic fracture in rocks. An interfacial
damage parameter, D, models the evolution of damage on fracture interfaces, while relative contact and contact—stick
fractions model contact—separation and stick—slip transitions. The damage rate is determined by an effective stress, writ-
ten as a scalar function of the normal and tangential components of the Riemann traction solution for assumed bonded
conditions. We propose alternative definitions of the effective stress that generate failure criteria that resemble the Tresca
and Mohr—Coulomb criteria for compressive stress states, and we compare their compressive strengths and fracture an-
gles under a compressive loading. We adopt a stochastic Weibull model for crack-nucleation in which cracks nucleate at
points where the effective stress exceeds the probabilistic fracture strength. We implement the nucleation model with an
h-adaptive asynchronous spacetime discontinuous Galerkin (aSDG) method that captures accurately the complex fracture
patterns that arise under dynamic loading conditions. Numerical examples illustrate the effects on fracture response of
varying the stochastic nucleation parameters and the alternative definitions of the effective stress.
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1 INTRODUCTION nents. This implies a linear relation between confinement
pressure and compressive strength. However, this straight-
line relation does not always fit experimental data [3], and
the extension of the linear relation into the tensile load-
ing regime generally over-predicts the tensile strength of
rock. Experiments show that the rates of increase of the
shear and compressive strengths decrease as confinement
pressure increases. In fact, beyond a certain confinement
pressure, rock reaches a critical state at which the shear
strength no longer increases, similar to the constant shear
strength of the Tresca model [4]. Beyond the limitations
associated with linearity of the Mohr—Coulomb model, var-
ious studies demonstrate that fully three-dimensional fail-
ure criteria are required to capture the influence of the
intermediate principal stress [5-8]. However, due to its
simplicity and the challenges involved in calibrating the
more advanced models, the Mohr-Coulomb model is still

Understanding the stress states that cause rock failure is
critical to the reliable analysis and safe design of structures
in rocks. In situ rock is typically subjected to compressive
stress fields, and experimental observations indicate that
the compressive strength of rock increases with increasing
confining pressure. Failure occurs by shearing along planes
oriented at a rock-type-specific angle, 6, defined relative
to the direction of maximum compressive stress [1]. Fail-
ure criteria describe the variation of compressive strength
with confining pressure and, in general, the stress states at
which rock fails.

A number of failure criteria have been proposed in rock
mechanics. The Tresca criterion assumes that a material
fails on planes with maximum shear stress. While it is
sometimes used for failure analysis of rock [2], the Tresca

criterion is more appropriate for ductile materials as its
corresponding shear strength is independent of the confine-
ment pressure. The Mohr—Coulomb (MC) failure criterion
depends linearly on the normal and shear stress compo-

the most popular and widely used-failure criterion for rock.

In this work, we propose an interfacial damage model
for fracture and slip in rock under compressive stress states
that combines dynamically-consistent Riemann solutions



for various contact modes across contact/fracture inter-
faces. A scalar effective stress, drives damage evolution on
fracture interfaces. We propose two alternative definitions
of the effective stress in [3.2] that match, respectively, the
Tresca model and the Mohr-Coulomb model under com-
pressive loading.

We use an h-adaptive asynchronous spacetime Dis-
continuous Galerkin (aSDG) method [9[10] and advanced
spacetime adaptive operations [11}/12] to track exactly the
incremental crack-propagation directions predicted by our
failure criteria. A stochastic model for fracture strength
that models the effects of microscopic flaws |11}/13] gov-
erns when and where we nucleate new cracks. We com-
pare the alternative effective stress stress models in terms
of their compressive strengths, fracture angles 6, and the
fracture patterns they predict in combination with the
aSDG method. We present results for problems without
pre-existing cracks and study the influence of the stochas-
tic model parameters on fracture patterns in §5| These
results demonstrate the importance of stochastic models
in fracture simulation and their effectiveness when imple-
mented with the proposed effective stress models in the
aSDG solver.

2 A RATE-DEPENDENT INTERFA-
CIAL DAMAGE MODEL

Material degradation in continuum models can be repre-
sented as a bulk material process, or in the case of frac-
ture, by the nucleation and propagation of sharp-interface
cracks. Cohesive models, the most popular representation
in sharp-interface crack models, use a traction—separation
relation (TSR) to model the tractions acting across a frac-
ture as nonlinear functions of the displacement jump across
the interface. However, enforcement of the impenetrabil-
ity condition and modeling frictional contact during crack
closure are challenging with T'SRs.

In lieu of a traditional cohesive model, we present an
interfacial damage model, first introduced in [11], that rep-
resents dynamic processes of debonding and contact on
fracture interfaces, i.e., surfaces where a fracture already
exists or may develop in the future. We use a scalar dam-
age parameter, D, to interpolate between intact (D = 0)
and failed (D = 1) states. Rather than degrade an inter-
facial stiffness, we interpolate between dynamically consis-
tent Riemann solutions for fully bonded (intact) and fully
debonded (failed) conditions to determine the jump con-
ditions across fracture interfaces. The Riemann solutions
for fully debonded conditions include all subcases for sep-
aration, contact—stick, and contact—slip modes, including
frictional effects, as described in |14]. Enforcement of these
Riemann solutions ensures satisfaction of the impenetrabil-
ity condition for crack closure without resorting to penalty
or other constraint methods.

We describe Riemann solutions for fully bonded condi-
tions and for the various debonded contact and separation
modes in and in their combination in the defi-
nition of dynamically consistent macroscopic target values

across a fracture surface. We present the effective stress
definitions and the damage evolution equation In
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Figure 1: Local coordinate frame at an arbitrary
spacetime location P on a spacetime fracture surface
I" for a problem in two spatial dimensions.

2.1 Riemann solutions for the various con-
tact modes

For completeness, this section provides a short overview of
different Riemann contact solutions from [14]. The solu-
tions for individual contact modes are obtained by solving
local Riemann problems at a contact interface. A local
coordinate frame at an arbitrary spacetime location P on
contact interface I' is illustrated in fig. [I} The local coor-
dinates are (£1,&2,t), and the frame is oriented such that
the &;-direction aligns with the spatial normal vector on
I.

The quantities from opposite sides of I", decorated with
superscripts + and —, define the initial data for the Rie-
mann problem. Distinct velocity traces, v, and tractions,
s*, defined by s = o - n in which the same spatial normal
vector, n, is used to compute s and s~ from the distinct
traces of the stress tensor field on the interface, o*. The
Riemann values at a given point P on the interface include
components of the traction vector acting on the interface
and traces of the velocity components from each side of
the interface. We denote these by (8, \“/j[)7 as shown in the
figure. Balance of linear momentum requires equality be-
tween the traction vectors obtained from the stress fields
on opposite sides of the interface. That is, §7 = § := §.

The kinematic compatibility conditions on the inter-
face depend on whether the material interface is intact
(perfectly bonded), or in the debonded case, on the spe-
cific contact mode. The velocity is continuous across I for
the bonded and contact—stick cases. For the contact—slip
case, the impenetrability condition requires continuity of
the normal velocity component, ’bf = 07 , while possible
slip admits discontinuities in the tangential velocity com-
ponents. In separation mode, all components of ¥ and
v~ may be discontinuous.

The Riemann solutions are obtained by preserving the



characteristic values of the elastodynamic problem across
the fracture surface while enforcing the aforementioned
compatibility conditions. For an isotropic material in lin-
ear elastodynamics, the spacetime characteristic trajecto-
ries in all directions are determined by the dilatational and
shear wave speeds, cf and c¢F, in which

A+2
cd = i M, Cs = \/ﬁ (1)
Vo P

where p is mass density and A, u are Lamé parameters.
The characteristic values depend on impedance values,

Zit . {(C%p)i Z:: 1 (2)

in which the index ¢ corresponds to spatial directions in
the local frame shown in fig. cf. |14]. The Riemann
solutions for contact—stick and bonded modes, decorated
with subscripts ST and B respectively, are

L L ST ZiT 4 gt Zit Zi— 7i+ -
8}3 = SlST =38 = Zi— + Zi+ + Zi— + Zi+ ('Uj - )
(3a)
i— _ Gl +Zz+ —Zi—
R L N Sk R (3b)

Zi— + Zi-l— Zi— + Zi+

in which no summation is implied for repeated indices i.

In separation mode, v and v~ are independent. The
Riemann tractions are set equal to a value, S, determined
by a particular fracture model or a prescribed crack-surface
loading. For example, S can be the traction induced by a
prescribed hydraulic pressure in hydraulic fracturing ap-
plications, or we can set S = 0 to model unloaded fracture
surfaces, as in [14]. The Riemann solutions for the separa-
tion case, decorated by S, are then obtained by preserving
the characteristic values on each side of the interface,

i=5=9 (4a)
Si _ it
¥ = v = of £ Tj (4b)

For the transition between contact—stick and contact—
slip modes we use the Mohr-Coulomb friction law. The
magnitude of tangential traction, for bonded Riemann so-
lutions, cf. , is defined as,

5=/ (33)" + (53)° (5)

for d = 3. For two spatial dimensions (d = 2), 75 = [53].
When the normal displacement jump and the bonded Rie-
mann value for the normal traction, §]13, indicate contact
conditions, the interface enters slip mode if 75 satisfies the
Coulomb slip condition,

IR I (6)
in which £ is the friction coefficient and (.)_ is the positive
Macaulay bracket. Under these conditions, the tangen-
tial component of the Riemann traction vector aligns with
the interfacial slip velocity and its magnitude is given by

k <—§]13>+; cf. Fig. 4 as well as a method for handling stick—
slip transitions where the slip direction is undefined in [14].
Enforcing the normal components of the bonded Riemann
solution and the Mohr—Coulomb friction law for tangential
components, we obtain the slip-mode Riemann solutions,
indicated by superscripts SL,

21
. o Sp 1=1
SsL =8 { k(-85), el i=2,3 (7a)
«B
CSLE o+ 51 ¢
Vs =V = [P = = 7b
’ ‘ { v =23 (7b)

2.2 Macroscopic target values

We use the damage parameter, D, to interpolate between
the bonded and debonded Riemann solutions on I,

s* = (1 — D)éB + Dsp (83,)
v = (1 - D)vp + DvE (8b)

in which subscripts B and D denote Riemann values for
bonded and debonded conditions. Thus, D, can be inter-
preted as the relative fraction of debonded surface in the
neighborhood of any location on I.

To evaluate the debonded Riemann solution, we must
first determine whether contact or separation mode holds
for the debonded part. Separation conditions hold when
the normal bonded traction $j is positive or the normal
displacement jump is positive. Otherwise, the interface
is in contact mode. Transitions from separation to con-
tact modes are physically non-smooth, so a regulariza-
tion is introduced to enhance numerical convergence, as
explained in [14]. We introduce a regularization param-
eter for this purpose called the relative contact fraction,
7 € [0 1], where n = 1 indicates full contact mode. Tran-
sitions from contact to separation, on the other hand, are
physically and mathematically smooth and require no reg-
ularization. We apply the Mohr-Coulomb condition @
to determine whether contact—stick or contact—slip condi-
tions hold on the contact part of the debonded fraction.
The binary state relative stick fraction, v € {0,1}, indi-
cates which of the two modes hold on the contact part,
with v = 1 corresponding to contact—stick mode.

In short, §p and \7% are themselves interpolations of
separation solutions (4)), bonded/contact—stick solutions
7 and contact—slip solutions. Considering the three
relative fractions, D, 7, and =, it is easy to show that
s* and v*T in can be expressed as linear sums of
the Riemann solutions from three distinct response modes,
bonded/contact—stick (B), contact—slip (SL), and separa-
tion (S):

s* = apSp + asr.8s, + agSs (9a)
vE = apvp + GSL‘V’SiL + as\u’si (9b)
where
ag =1— D+ Dny (10a)
ast, = Dn(1 —7) (10b)
as = D(1—n) (10c)

and ag, asy,, as € [0, 1].
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Figure 2: Failure criteria in terms of normal compo-
nent, &]13, and magnitude of tangential component, 73,
of bonded Riemann tractions for alternative effective
stress definitions.

3 INTERFACIAL DAMAGE EVOLU-
TION

This section presents an evolution law for the damage field,
D, and introduces alternative definitions for the scalar ef-
fective stress that determines the driving force for damage
evolution.

3.1 Damage evolution law

Bulk damage models that lack a microscopic length scale
may generate non-convergent numerical solutions where
damage localizes to layers whose width continues to shrink
without limit as the mesh is refined [15//16]. They may also
exhibit convergence problems. Similar issues arise in inter-
facial damage models that lack microscopic length scales.
A stabilizing length scale can either be introduced directly
in the governing equations or indirectly via a time scale
in the damage evolution equations. Examples of the lat-
ter type are presented in [17] for bulk damage models and
in [16}/18] for interfacial damage models.

Following the model in [19], we adopt the damage evo-
lution equation,

b {;u—H«Dt—Dm D<l gy
0 D=1

in which T is a relazation time, and Dy is a target damage
value. In general, the function H has unit value at zero and
decreases monotonically to 0 at infinity. Following [19], we
use H(x) = exp(—azx), a form that enforces a maximum
damage rate of 1/7.

In general, the target damage value D; depends on the
states on both sides of the interface. In this work, we focus
on mechanical damage processes and assume that bonded
Riemann tractions drive the damage evolution. The justifi-
cation arises from the fact that we can associate 1 — D and
D with the bonded and debonded microscopic fractions
in the neighborhood of a point on I'. Since the bonded
Riemann tractions in act on the remaining undam-
aged fraction, the locus of continuing damage, the bonded
tractions are the driving force for additional damage. Ac-
cordingly, we introduce a scalar effective stress, s, defined

a) T%B by v O =DPe
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Figure 3: Determination of pressure strength p,2 and
angle 62 for the ¢? effective stress model.

as a function of the normal component, §j in (3a)), and the
magnitude of the tangential component, 75 in (5)), of the
bonded Riemann traction[l] That is,

5:= f(5%,78), (12)

where f is a two-argument scalar function. Alternative
choices for f are discussed in
We write the target damage value as a function of §,

e O

|
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in which 0 < s < s, and s and s denote, respectively,
thresholds for the onset of additional damage evolution
and for attainment of the maximum damage rate, 1/7. We
refer to § as the fracture strength. If § < s, we get Dy = 0,
and delivers D = 0. We call the ratio, ¢y := s/s
(0 < ¢g < 1), the brittleness factor because higher values
of ¢y imply a more brittle fracture process.

3.2 Choices for the effective stress

This subsection presents alternative definitions for the ef-
fective stress; cf. . The condition, § = s, defines a
failure criterion for each case where the maximum target
damage value, D; = 1, is attained in . If the interfa-
cial loading is strictly tensile, so that 75 = 0, the tensile
strength, &, is the value of 5} at which D; = 1. Con-
versely, if the interface is loaded exclusively in shear, so
that 5}13 = 0, the shear strength 7 (or cohesion in rock
mechanics) is defined as the value of 75 for which D, = 1.
Each effective stress definition includes an internal param-
eter that adjusts the relative weighting of &34 and ¥5. We
can adjust these parameters to match both the tensile and
shear strengths between the two models.

3.2.1 (2 effective stress model
The (2 model defines the effective stress as the 2 norm of

(o), B78); i.c.,

()% + (B7)" (14)

.§£2 =

1Our use of the term, effective stress, should not be confused with its use in rock mechanics, where it commonly refers to the

compressive part of the normal traction less the pore pressure.



in which the shear stress factor, [, adjusts the influence
of the tangential component of the Riemann traction, and
the Macaulay brackets, (.), ensure that only tensile nor-
mal tractions drive damage evolution. From here on, we
use subscripts 2 to label quantities associated with the
? effective stress model. This definition of effective stress
has been used in the context of cohesive fracture mod-
els, e.g., |20], and in interfacial damage models by the au-
thors [11,/12]. As discussed above, we obtain the tensile
and shear strengths by setting $y2 = s for pure tensile and
shear modes, respectively. This yields,

Op2 = Sy2 (15a)
_ Sp2
T2 = % (15b)

that is, 642 /T2 = 1/ and 5,2 refers to the tensile strength
of the interface. The red curve in fig. [2] shows the fail-
ure criterion for the ¢? model. It covers pure tensile and
pure shear states as well as mixed-mode and compressive
loading.

3.2.2 Mohr—Coulomb effective stress model

The Mohr-Coulomb effective stress takes the form,
Sne = TR+ kop (16)

in which a subscript, MC indicates a quantity in the Mohr—
Coulomb effective stress model, and k is the friction coef-
ficient introduced in @, from which the angle of friction
¢ is defined as,

¢ = tan"*(k) (17)

Equation has a similar form to @, in that for a
debonded interface and & < 0, $yic = 0 corresponds to
the transition between stick and slip modes.

The tensile and shear strengths are again obtained by
setting Spc = 5. This yields,

omc = suc/k (18a)
TMC = SMC (18b)
Equation shows that syic is the shear strength (co-
hesion) of the interface.

The blue line in fig. [2| shows the Mohr-Coulomb fail-
ure criterion. From we observe that opc = Tvmc/k-
That is, the tensile strength is equal to the cohesion di-
vided by the coefficient of friction. In practice, the tensile
strength of rock typically ranges from 5% to 10% of co-
hesion. However, based on realistic values of the friction
coefficient, oyc = Tve/k predicts much higher values for
omc- This discrepancy is due to the assumed linear exten-
sion of the Mohr-Coulomb failure criterion for compressive
stress states into the tensile regime. In fact, the failure
envelope typically intersects the horizontal axis at a much
smaller values of oyi¢ than the linear extension predicts.

If we match the tensile and shear strengths of the two
models according to and , we obtain

S Qi
Il
QI
QI

= 1
2 MC L
R } = (= o Syme = kSe2 (19)
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Figure 4: Determination of the compressive strength,
Puvc, and the critical angle, Oyc, in the Mohr—
Coulomb effective stress model.

3.2.3 Comparison of the effective stress mod-
els

Figure ) shows the Mohr’s circle for a uniaxial compres-
sion loading and the Mohr—Coulomb failure criterion in the
&% and 7 plane. As shown in fig. ) the points A and B
in fig. ) correspond to 0,, = 0 at angle 0 and 044 = P2,
the compressive strength for the ¢? effective stress model,
at angle 7/2, respectively. From the Mohr’s circle it is
evident that,

Ppe = 27 = 2kG (20a)
02 = ﬁ:% (20b)

where Py, and 62, the angle at which fracture happens,
are shown in fig. [3p).

Figure[dshows the Mohr’s circle and failure angle, sim-
ilar to fig. [3] but for Mohr—Coulomb effective stress. Figure
4h) shows that /2 — ¢ is the critical angle at which the
Mohr’s circle first becomes tangent to the failure criterion
line as op, — —pye- Combining this result with simple
geometric identities, we obtain the compressive strength,
Dmcs and the failure angle, Oy, for the Mohr—Coulomb
effective stress model:

2
1
Pye = 20k |14 4/1+ () (21a)

e (i-3)

The angle fyic is shown in fig.[db). In the 2 model, the
difference o,, — opp is always 27, even if ,, < 0. Whereas
with the Mohr—Coulomb model, a larger difference in com-
pressive stress is needed to cause failure as the transverse
confinement stress, 0,4, decreases. That is, 0,4, — opp In-
creases as 04, decreases in the Mohr—Coulomb model.

The Mohr-Coulomb effective stress model predicts a
larger compressive stress than the ¢2 model, mainly due to
strengthening of the material under increasing compres-
sive loading; cf. , . Figure [5| presents normal-
ized compressive strengths for the two models as a func-
tion of the friction coefficient, & € [0,1] (in most rock,
k €]0.2,0.7]). The 2 model delivers p; /7 = 2 for all val-
ues of of k, while values of py;c/7 in the Mohr—Coulomb
model start from 2 at k& = 0 and grow to 2(1 + v/2) at
k = 1 where pyc/Dp2 = 2.4. The fracture angle is al-
ways 7/4 in the ¢ model while, as shown in fig. 4b), the

(21b)
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Figure 5: Comparison of compressive strength p, nor-
malized by shear strength 7, of the two effective stress
models.

Mohr—Coulomb fracture angle is steeper by Oyic/2. These
observations hold even for nonzero o,,. In general, the
Mohr—Coulomb failure angle moves closer to the direction
of the largest compressive load (i.e., opp if opp < 044) as k
increases.

4 STOCHASTIC FRACTURE NUCLE-
ATION MODEL AND ADAPTIVE
aSDG IMPLEMENTATION

The authors discuss the importance and advantages of us-
ing a stochastic model for crack nucleation in [13]. For
brevity, we only provide the necessary material needed for
explaining numerical results in §5] We base our probabilis-
tic crack nucleation criteria on the Weibull model [21],22],
since it models probabilistic fracture strength and size ef-
fects in quasi-brittle materials such as rock reasonably well.
The cumulative distribution function (CDF) for the frac-
ture strength, 5, of a region with given area A is

A (5 - Smin>m
PGE) =1-¢ Ao\ S0 (22)

in which Ag is a reference area such as the area of an
experimental rock specimen used to calibrate the Weibull
model, sy is a strength scale, m is the Weibull modulus,
and sy, is a lower bound for the fracture strength; cf. .
Lower values of sg imply lower fracture fracture strengths,
as do smaller values of Ag. From the discussion above, it
is evident that nucleation strength is the same as fracture
strength. That is, a crack is nucleated at a position if its
corresponding effective stress reaches the fracture strength
of the point. The sampled fracture strength is also used
for damage evolution on any cracks propagated from the
nucleation point through .

We use an h-adaptive asynchronous spacetime discon-
tinuous Galerkin (aSDG) method [9,10] to solve the elasto-
dynamics problem in our dynamic simulations of rock frac-
ture. The aSDG method’s local and asynchronous solution

- >
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g0

Figure 6: Domain geometry and loading for
rectangular-domain fracture problem.

structure, linear computational complexity, and support
for arbitrarily high-order discretizations in both space and
time make it ideal for simulating dynamic fracture in rock.
We use the aSDG method’s powerful spacetime adaptive
meshing capabilities to capture the fine details of elastody-
namic solutions and to align inter-element boundaries with
arbitrary, solution-dependent nucleation sites and crack
paths [11}[23].

The aSDG method advances the solution in time by
solving local patches of elements in spacetime. Each patch
includes a small number of elements. For example, for 2D
problems there are roughly an average of six tetrahedral
elements in a patch, where the vertical axis corresponds
to time. The spatial projection of these patches often in-
volves a group of triangles, with total area A, around a
vertex V. When sampling a random fracture strength s for
vertex V, the spatial area of the patch A is used to mod-
ulate the Weibull model in (22). The factor A/4, in the
Weibull CDF models size effect by providing smaller frac-
ture strengths as larger domains (larger A) are considered.
For further details on sampling fracture strength values in
the aSDG method, please refer to [11}23].

5 NUMERICAL RESULTS

5.1 Rock fracture in compressive mode

5.2 Fracture in a rectangular domain un-
der dynamic compressive loading

Figure [f] diagrams a problem involving compressive uni-
axial loading applied to a rectangular domain in which
the load ramps from zero to a sustained value of oy =
2.5MPa over 10 microseconds. The domain dimensions
are W = 0.08 m and H = 0.16 m. The material prop-
erties are: Young’s modulus E = 65 GPa, mass density
p = 2600 kg/m?, and Poisson’s ratio v = 0.27. The fric-
tion coefficient is k = 0.3, corresponding to ¢ = 16.9° in
the Mohr—Coulomb (MC) effective stress model.
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Figure 7: Comparison of space meshes and damage for the ¢? and MC effective stress models
with varying reference area, Ag. Damage values on crack segments in the range, D € [0, 1], are
mapped to a blue-to-red color range. The solutions are shown for time ¢ = 150 us.
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Figure 8: Comparison of absolute slip fractions, agr,, for the £2 and MC effective stress models
with varying reference area, Ag. Slip fractions on crack segments in the range, agr, € [0, 1], are
mapped to a blue-to-red color range. The solutions are shown for time ¢t = 150 us.



(a) Solution. (b) Space mesh.

(g) Solution.

(n) Space mesh.

(m) Solution. (o) D.

(p) 7. (a) 7-

Figure 9: Solution for Mohr—Coulomb effective stress model and reference area, Ay = 0.1. Top, middle, and
bottom rows correspond, respectively, to t = 48us, 108us, and 150us. Color in the solution visualizations in
the first column depicts strain energy density; low—high values map to blue-red.

The purpose of this example is to compare the re-
sponses of the 2 and MC effective stress models and to
study the influence of stochastic distributions of fracture
strength, 5. Specifically, we specify parameters m = 4,
n =4 MPa, and sp;;, = 1.1MPa in the Weibull model. We
investigate four values of Ay, chosen to represent a range
of weak to strong fracture strengths, as discussed below.

Figure [7] compares crack patterns and adapted meshes
using the ¢2 (top row) and Mohr—Coulomb (bottom row)
effective stress models for four reference area values, Ag =
1m2, 0.Im?, 0.0lm?, and 0.00lm2. The solutions are
shown at time ¢ = 150 us, which is substantially past
the time compressive waves from the top boundary im-
pinge on those propagating from the bottom boundary
at t = 14.3 ps. That is, the compressive stresses propa-
gated from the two boundaries have already integrated and
generate compressive stresses larger than those generated
by each individual wave. These generate mean fracture
strengths, E(s) = 11.88 MPa, 7.16 MPa, 4.50 MPa, and

3.02 MPa, respectively, for A = W x H = 0.0128 m? in
(22)). The compressive strengths for k = 0.3 are p,2 = 0.65
and pyc = 0.80645; cf. and .

Before the compressive waves from the two sides inter-
sect in the center horizontal line, the compress stress expe-
rienced is 0o = 2.5MPa. A crack is nucleated if og > p with
p being a stochastic value, given that s is sampled based
on the Weibull model. From the values reported above, it
is evident that for the two models and Ay = 1 m?,0.1 m?
the mean compressive strength is considerably greater than
compressive stress og; thus fewer nucleated points are ex-
pected. The sampled compressive strengths decrease and
more cracks are expected to nucleate as Ay — 0. This
trend is evident in the results obtained with both mod-
els, although more cracks are generated with the £2 model
given its slightly lower compressive strengths.

The two models generate distinct fracture angles, as
expected. The numerical results for the ¢? model in figs.
m(a—d) agree with the prediction, 6,2 = 45°, from (20b)).



The crack angles for the Mohr—Coulomb model in figs. (e—
h) cluster around fyc = 36.65° (measured with respect
to the vertical direction), as predicted by . From a
computational perspective, it is clear that the h-adaptive
aSDG method is fully capable of capturing complex frac-
ture patterns, particularly for smaller values of Agy, and
exactly aligning element boundaries with crack propaga-
tion directions.

Modifying Ag to vary the stochastic fracture strength
impacts the fracture response in several ways. In fig. [7]
we observe more crack nucleations as Ay decreases, but
also, more crack segments with incomplete damage. The
increase in nucleations is expected because reducing Ay
reduces the mean nucleation strength. However, a larger
fraction of the nucleated cracks fail to reach full damage be-
cause higher crack densities produce more dynamic shield-
ing between cracks, and overall, relax the initial dynamic
loading. This leads to slower damage rates and more cases
of incomplete fracture than in specimens with higher nu-
cleation resistance and fewer cracks.

Figure depicts the absolute slip area fraction
aSL on crack surfaces in the deformed geometry. This
figure confirms that as more cracks nucleate, a smaller frac-
tion of the total fracture surface fully debonds to allow ac-
tive sliding (agr, = 1). For larger values of Ag, we observe
longer fracture segments and longer segments involved in
active sliding.  Figure [9] depicts various aspects of the
evolution of the numerical solution of the Mohr—Coulomb
model with Ag = 0.1 to shed more light on the formation
and activation of slip lines.

o,
|

Oh= o)

1
o,

Figure 10: Problem sketch for explosive fracturing
example.

5.3 Explosive fracturing

Consider a pressurized wellbore subjected to far-field con-
fining stresses, as shown in Figure [I0] The wellbore has a
diameter of 30 cm and is subjected to hydrostatic in-situ
confining stresses, given by oj, = 2.425 MPa. The bulk ma-
terial properties are: Young’s modulus £ = 20GPa, mass
density p = 2500 kg/m?, and Poisson’s ratio v = 0.2. The
Weibull parameters are m = 4, n = 4MPa, sy, = 500kPa,
and Ag = 0.1 m%2. An explosive compressive load acts

on the wellbore walls, ramping from ambient pressure to
27.5 MPa in 750 ns. Unlike typical hydraulic fracturing
practice, there are no pre-cut perforations to initiate frac-
ture in this example. Instead, we rely on the stochastic
model of in-situ defects to nucleate fracture.

Figure [IT] shows a solution sequence obtained with the
Mohr—Coulomb effective stress model. Physically, the high
pressures of the detonation cause the rock to fail and com-
pact. After the stress wave passes, the rock unloads elas-
tically, leaving an enlarged, deformed wellbore, a zone of
compacted rock and a region of greater compressive stress.
The cracks are almost all in shear/compressive mode. Fig-
ures and [I5] compare solutions, crack patterns,
space meshes, and various fields on the crack surfaces from
the two effective stress models. The results confirm the en-
larged deformed shape and almost instantaneous and uni-
form damage state around the wellbore. Moreover, figs.
and [T confirm full damage, contact mode, and slip
of crack surfaces in this zone. We also observe that the
fracture surfaces have propagated well beyond the region
of full damage, however, given the finite time needed for
damage evolution, cf. , and attenuation of the compres-
sive wave, they accumulate very little damage. In compar-
ison to the £? model, the Mohr—Coulomb model generates
slightly steeper crack angles relative to the wellbore sur-
face and has more spread, although its damage zone is less
concentrated.

6 CONCLUSIONS

We proposed two effective stress models for crack nucle-
ation and the evolution of interfacial damage on fracture
surfaces. We related the models to Tresca and Mohr-
Coulomb failure criteria for rock under compressive load-
ing. Our numerical results for a dynamic rock compaction
problem demonstrate that the majority of cracks form
along directions predicted by the two models. We used a
stochastic strength model to nucleate new fractures cracks.
Numerical experiments showed that stochastic representa-
tions of weaker materials result in more crack nucleation
but a smaller fraction reaching full damage and slip con-
ditions.

While our results demonstrate the ability of the dam-
age model and the h-adaptive aSDG method to model and
capture complex fracture response, we do not expect the
proposed effective stress models to correctly model frac-
ture in rock under more general loading conditions. The ¢2
model does not capture the strengthening of rock under in-
creasing confining pressure, and the linearity of the Mohr—
Coulomb model over-estimates tensile strength. This re-
sults in nonphysical fracture patterns for predominantly
tensile crack propagation. We plan to investigate more
advanced failure criteria, e.g., [8,24}25], to formulate more
robust effective stress models for dynamic fracture in rock.



(a) Time t = 7.5 ps. (b) Time ¢t =15 ps.

(d) Time ¢t = 30 us. (e) Time t = 45 ps. (f) Time t = 57.5 ps.
Figure 11: Solution visualization of well fracture with Mohr—Coulomb effective stress model. Strain energy
density is mapped to color with blue-to-red range indicating low to high values.

(a) £2 effective stress model. (b) Mohr—Coulomb effective stress model.

Figure 12: Comparison of solutions for ¢? and MC effective stress models at time ¢t = 37.5 us. Strain energy
density is mapped to color with blue-to-red range indicating low to high values.

(a) £2 effective stress model. (b) Mohr—Coulomb effective stress model.

Figure 13: Comparison of space meshes and damage values for 2 and MC effective stress models at time
t = 37.5 us. Damage values on crack segments in the range, D € [0, 1], are mapped to a blue-to-red color range.
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(a) £* effective stress model.

(b) Mohr—Coulomb effective stress model.

Figure 14: Comparison of crack patterns and contact relative fractions, 7, for 2 and MC effective stress models
at time ¢t = 37.5 ps. Contact fractions on crack segments in the range, n € [0, 1], are mapped to a blue-to-red
color range.

(a) €2 effective stress model.

(b) Mohr—Coulomb effective stress model.

Figure 15: Comparison of crack patterns and contact-slip absolute fractions, agr,, for £2 and MC effective stress
models at time ¢ = 37.5 us. Contact—slip fractions on crack segments in the range, agr, € [0, 1], are mapped to
a blue-to-red color range.
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