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ABSTRACT
The response of quasi-brittle materials is greatly influ-

enced by their microstructural architecture and variations.
To model such statistical variability, Statistical Volume El-
ements (SVEs) are used to derive a scalar fracture strength
for domains populated with microcracks. By employing the
moving window approach the probability density function
and covariance function of the scalar fracture strength field
are obtained. The Karhunen-Loève method is used to gener-
ate realizations of fracture strength that are consistent with
the SVE-derived statistics. The effect of homogenization
scheme, through the size of SVE, on fracture pattern is
studied by using an asynchronous spacetime discontinuous
Galerkin (aSDG) finite element method, where cracks are
exactly tracked by the method’s adaptive operations.

INTRODUCTION
Due to the lack significant bulk energy dissipative mech-

anisms for quasi-brittle materials, their mechanical response
is greatly influenced by microscale distribution of defects [1].
Size effect, the decrease of fracture strength as the size of
a specimen increases, and variations in crack patterns, ulti-
mate loads, e.g., cf. [2,3] are some consequences of the high
sensitivity of quasi-brittle materials to their microstructural
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defects. Randomness and inhomogeneity of material is con-
sidered in geometry [2–4], initial damage state [5,6], elastic-
ity [7, 8], strength [6, 9], or fracture toughness and cohesive
strength [10,11].

The variability in a material property can be either ex-
plicitly modeled, by direct modeling of microstructural con-
stituents, e.g., [12–14], or implicitly. In implicit approaches
phenomenological models, e.g., Weibull model [15], is used
as in [16] or macroscopic effective constitutive quantities
are derived with a homogenization approach wherein the
elemental problem is solved in a thermodynamically consis-
tent Volume Element (VE). There are two commonly used
classes of VEs known as Representative Volume Element
(RVE) and Statistical Volume Elements (SVEs) [17, 18].
Employing SVEs in random media can be a more accu-
rate averaging approach than utilizing RVEs for two rea-
sons; first, they maintain spatial inhomogeneity of material
property which is important in generation of stress concen-
tration and nucleation of cracks from weak sites. Second,
due to their statistical nature they can model macroscopic
probabilistic variations in ultimate load and fracture energy.

The authors have previously employed implicit ap-
proaches based on Weibull model in [16], and SVE homog-
enization in [19]. We choose an approach similar to the
latter work by using SVEs to generate random fields for
fracture strength. But, we study the impact of SVE size
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on generated random fields and investigate how they will
influence the induced fracture pattern. In addition, unlike
the prior work, their is no approximation involved in the
Karhunen-Loève (KL) approach by forcing the Probability
Density Function (PDF) of the random field to be lognor-
mal. Specifically, we use the CDF-inverse approach to map
back and forth between the original statistics of the random
fracture field and a standard normal field used for the gener-
ation of the KL grid. Finally, the asynchronous Spacetime
Discontinuous Galerkin (aSDG) method is used to simu-
late crack propagation on random fields realized based on
different SVE window sizes. As demonstrated, more realis-
tic fracture patterns are obtained for realizations that are
based on smaller SVE window sizes.

FORMULATION
In this section we review the derivation of fracture

strength, by using SVEs with microcracks, and the gen-
eration of statistically consistent grids for fracture strength
based on SVE results.

Computation of Fracture Strength for an SVE

FIGURE 1. CRACKS CONSIDERED FOR COMPUTATION
OF EFFECTIVE STRENGTH FOR AN SVE; BULE AND
RED COLORS CORRESPOND TO CRACK SEGMENTS IN-
SIDE AND OUTSIDE THE SVE, RESPECTIVELY.

Figure 1 shows a sample SVE in domain D̄. The cracks
that are fully or partially in the SVE are considered in
the computation of its fracture strength s̄. The fracture
strength is computed by finding the minimum tensile stress,
along all directions, such that at least for one of the crack
tips in the SVE, K = Kc where K is the stress intensity
factor at the crack tip and Kc is the fracture toughness of
the given material.

Clearly, the microcrack propagation criterion at the
SVE level is assumed to follow the linear elastic fracture
mechanics (LEFM) theory. The association of the stress
that result in propagation of one SVE with the SVE’s frac-

ture strength is motivated by the behavior of quasi-brittle
materials where there is a very small difference between
the stresses that initiate fracture and the ultimate stress
(fracture stress); cf. the results in [20]. For our model the
point of departure from linear elasticity and initiation of
failure corresponds to the stress at which the first microc-
rack propagates. Finally, instead of doing a full FE analysis,
we assume that the stress intensity factor of each crack can
be approximated by that of a crack in an infinite domain.
While this is still expected to model spatial variation of
fracture strength relatively well, in forthcoming works we
aim to use FEM analyses for this purpose.

Let Lc and lc be the original length and length of the ith
microcrack within the SVE, respectively. The critical stress
for this specific ith microcrack within the SVE is given by
the equation

s̄ i =
(
Lic
lic

)α
Kc√
πLic/2

, (1)

where as mentioned Kc is the fracture toughness and α is
a constant value coefficient. The values of α= 0 and α= 1

2
consider the full length of the crack, Lic, and the length
of the crack inside the SVE, lic, respectively; accordingly,
similar to [19] we choose α= 1

4 to consider an intermediate
length of the crack between Lic and lic when it intersects the
SVE boundaries. After computing critical stresses s̄ i for
all cracks i ∈ I, the strength of the SVE s̄ is defined as,

s̄=mini∈I{s̄ i}. (2)

By this definition, a fracture strength value s̄ is assigned
to SVEs constructed at all spatial positions and for all ran-
dom realizations that are generated based on the statistics
of microcracks. The point values of s̄ are used to compute
its probability density function (PDF). The covariance func-
tion needed for the Karhunen-Loève method is obtained by
the moving technique [21], where the sampling SVE is grad-
ually moved in the domain to determine the trend on which
fracture strength changes spatially.

Karhunen-Loeve (KL) Expansion
For a given domain D̄ the Karhunen-Loève (KL)

method enables generating random fields for a variable ξ,
consistent with its underlying statistics, in this case its
point-wise PDF and two-point covariance function. The
value of the random field ξ is derived based on a random
variable ω, that is ξ= ξ(x,ω). Having these functions (at all
points), it is possible to derive a simple formula which ap-
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proximates the mean and covariance of the known random
variable distribution; the truncated KL expansion of the
random field ξ = ξ(x,ω) yields the following representation
of the field,

ξ(x,ω) = µξ(x) +
nKL∑
i=1

√
λibi(x)Yi(ω) (3)

where {λi, bi(x)}nKL
i=1 are eigen-pairs determined from the

covariance of the random field and Yi(ω) are centered, un-
correlated random variables 1 which derive the probabil-
ity distribution of the random field. For an arbitrary PDF
function for ξ(x,ω), Yi are only uncorrelated. To make this
formula practical and be able to generate random variables
Yi independent of each other, they should be independent
random variables. The latter condition holds if ξ(x,ω) is
point-wise Gaussian. Thus, Eqn. (3) is to be used for a
normal field. In our prior work [19], we approximated the
fracture strength field by a lognormal field to be able to di-
rectly use Eqn. (3) on log(s̄). However, in general we need
to transfer a random field ξ to η, a random field with point-
wise Gaussian distribution before using the KL method.
Then a random field for the mapped normal field η is gen-
erated, and finally the random field is transferred back to its
original form. The KL expansion for the Gaussian random
field η(x,ω)∼N(µη,ση) is,

η(x,ω) = µη(x) +
nKL∑
i=1

√
λibi(x)yi, (4)

where µη and ση are the mean value and standard deviation
of η. The aforementioned eigen-pairs of the spatial eigen-
functions bi(x) and eigenvalues λi are obtained by solving
a generalized eigenvalue problem (EVP) that can be solved
by finite element method (FEM) discretization; cf. [22].

As mentioned, a general non-Gaussian random field
ξ(x,ω) is first mapped to a Gaussian random field η(x,ω).
This map is expressed through the Inverse Transformation
Method,

η(x,ω) = F−1
η (Fξ(ξ(x,ω))), (5)

where Fξ and Fη are the Cumulative Density Functions
(CDF) of the non-Gaussian and Gaussian random fields,
respectively. We use a standard normal, i.e., µη = 0 and
ση = 1, for the Gaussian field. Finally, for any of the random

1E(Yi(ω)) = 0, and E(Yi(ω)Yj(ω)) = 0

field realizations of η, obtained by Eqn. (4), we use the
inverse of the map in Eqn. (5) to transfer it back to ξ.
This transformation for ξ (equal to fracture strength s̄) is
expressed as,

s̄(x) = ξ(x) = F−1
ξ

(1
2
[
1 + Erf

(η(x)√
2

)])
. (6)

This is a more accurate extension of [19] wherein the original
field ξ(x,ω) and CDF Fξ assumed a Log-normal probabil-
ity distribution. We note that the covariance function for
η(x,ω), which is required in solving the KL eigen-problem,
is characterized by a moving window approach; cf. [19] for
more details.

NUMERICAL RESULTS

(a) EXAMPLE OF REALIZATION D̄

WITH RANDOM MICROSTRUCTURE
ARCHITECTURE.

(b) SVE (LV E = 1) SAMPLE
FROM Fig. 2a CENTERED AT
x = (0,0).

(c) SVE (LV E = 1) SAMPLE
FROM Fig. 2a CENTERED AT
x = (10,10).

FIGURE 2. A 40 mm × 40 mm DOMAIN AND TWO SAM-
PLED SVES.
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The spatial domain D̄ used for generating the follow-
ing statistical data is a simple rectangular domain centered
at the Cartesian position xcenter = (0,0) and spanning 40
length units (LD̄ = 40 mm) in both e1 and e2 directions.

To generate domain microstructural realizations with
microcracks, we assume that the microcrack length follows
a Weibull distribution [15, 23] and its angle a uniform dis-
tributed between [0 2π]. Furthermore, the average and stan-
dard deviation of microcrack length are 330 µm and 170 µm,
respectively. Finally, we use a take-and-place algorithm to
distribute generated cracks within domain D̄. A sample re-
alization is shown in Fig. 2a. Two sample SVEs generated
from the domain in Fig. 2a are shown in Fig. 2b and Fig.
2c. The center points of sampled SVEs form a nonuniform
grid, with a denser spacing near zero distance, to have a
more accurate derivation of covariance function.

The effect of the SVE size on random field statistics

The size of the SVE directly influences the statistics
of the random field characterized. To study the relation
between the SVE size and the fracture strength random
field statistics, square SVEs with edge sizes of 1, 2, 4, 8
and 16 mm were considered. The PDFs of the fracture
strength field in Fig. 3 are accordingly labeled by SVE1×1,
SVE2×2, SVE4×4, SVE8×8, and SVE16×16.

FIGURE 3. THE EFFECT OF THE SVE SIZE ON THE PDF
OF RANDOM FIELD s̄.

FIGURE 4. THE EFFECT OF THE SVE SIZE ON RANDOM
FIELD s̄ STATISTICS.

As the SVE size becomes larger, the peek of the PDF
curve shifts to the left, that is a weaker material is repre-
sented. This is the well-known size effect for quasi-brittle
materials; as the size of the domain increases there is a
larger likelihood that a more critical crack or defect ex-
ists in it. That is why larger samples tend to have lower
fracture strengths. In fact, domain size calibrated Weibull
model and many other stochastic models in the literature
attempt to represent this phenomenon.

Another observation is that as the window size de-
creases, the sampled fracture strength values are more likely
to have wider variations. The reason is that at small sizes,
the SVE may land in a region with long crack(s) or a short
one, thus yielding a low or a high fracture strength, respec-
tively. This is demonstrated by higher standard deviations
for smaller SVE window sizes in Fig. 4. On the contrary,
as the SVE window size increases, the standard deviation
decreases, i.e., PDF function becomes narrower. This is ex-
pected, because as the window size increases many defects
(microcracks) are included in the SVE and all SVEs tend
to have roughly the same critical crack length.

KL random fields
The KL random field meshes were generated based on

the assumption that the material modeled was isotropic
with a rotationally invariant scalar fracture strength, and
the covariance function depending only on distance between
two arbitrary points. Moreover, the covariance function for
fracture strength—casted to a standard normal Gaussian
distribution, cf. η in Eqn. (5)—is interpolated by the expo-
nentially decaying function,

COV (η(x1),η(x2)) = e
−
(
|x1−x2|

dc

)2

, (7)
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where dc is a characteristic correlation length scale implied
by the form of the function. It is noted that, the exponential
function from Eqn. (7) is a very good fit for the numerically
obtained covariance functions. The correlation lengths for
different SVE sizes are d1×1

c = 0.52 mm, d2×2
c = 0.96 mm,

d4×4
c = 1.84 mm, d8×8

c = 3.98 mm, and d16×16
c = 8.19 mm

respectively, and their covariance functions are shown in
Fig. 5. To ensure that accurate KL grids are constructed,
enough number of terms should be considered in Eqn. (3) so
that last eigenvalues are very close to zero; for the SVE1×1
sampling, at nKL ≈ 1500 eigenvalues are extremely close to
zero, and even fewer terms are needed for larger sampling
window sizes. For all the KL grids generated subsequently,
nKL = 2000 eigenvalues / eigenvectors are considered.

FIGURE 5. ONE-DIMENSIONAL COVARIANCE FUNC-
TIONS BASED ON VARIABLE SVE SIZES.

Discrete grids for fracture strength and FEM solution
We use two different discrete grids for our fracture sim-

ulations. The material grid is used for the generation and
storage of fracture strength and the aSDG spatial grid is
the finite element discrete mesh used for fracture simula-
tion. The former is a uniform grid on which the KL eigen-
value problem is solved; cf. the formulation section and [22].
The latter is used for the solution of dynamic fracture prob-
lem, which is nonuniform. Adaptive operations are used to
control solution discretization error and accommodate arbi-
trary oriented crack paths. For fracture simulations in this
manuscript a 16mm× 16mm domain is considered. Note
that this domain is different from the 40mm× 40mm do-
mains used in Fig. 2a. In the latter case, domains with
micro-structure (microcracks herein) are generated to derive
the first and second moments needed for the KL method,
while in the former case the KL grids are generated based on
such derived statistics. It should be noted that the sizes of
these domains do not need to be the same. Finally, the KL
domains generated subsequently do not include any microc-
racks, as the effect of microcracks is already incorporated in
the inhomogeneous and randomly sampled fracture strength
field.

Accordingly, a structured 2D mesh of dimensions

[−8,8] mm × [−8,8] mm is used for the KL expansion
method. For this grid, 2D quadrilateral elements (60× 60
elements) of equal element size are used for solving the
eigenvalue problem and generating random field realiza-
tions. The KL discretization mesh is shown in Fig. 6.

FIGURE 6. STRUCTURED MESH FOR KL EIGENVALUE
PROBLEM AND RANDOM FIELD REALIZATIONS.

One KL random field realization for fracture strength
s̄ for each of the available SVE sizes is depicted in Fig. 7.
The decrease of each SVE size yielded a greater variability
in fracture strength randomness within a given length-scale;
this behavior agrees with theoretical expectations of how
SVE sizes affect random field value scatter.

Dynamic fracture under uniform uniaxial applied ten-
sile stress

We use an h-adaptive asynchronous spacetime discon-
tinuous Galerkin (aSDG) finite element method [24,25] for
our dynamic fracture simulations. The aSDG method di-
rectly discretizes spacetime using nonuniform grids that sat-
isfy a special causality constraint [26] yielding unique prop-
erties such as local and asynchronous solution scheme, arbi-
trarily high and local temporal order of accuracy, and linear
solution scaling with number of elements. This numerical
scheme, implemented in C++, utilizes the aforementioned
features as well as advanced adaptive operations in space-
time to very accurately and efficiently capture complex frac-
ture patterns by a crack tracking adaptive scheme [27, 28].
The solution is mesh independent and accommodates crack
propagation in any desired direction, a feature similar to the
popular XFEM and GFEM methods, but removes the need
to enrich element basis functions. All these features make
the aSDG method ideal for dynamic quasi-brittle fracture
simulations reported herein.

This section aims to validate the method’s ability to
capture fracture nucleation at domain locations of weaker
fracture strength as well as track the development of a
possibly complex crack network. The FEM domain is a
2D quadrilateral of side length 8 centered are x = (0,0).
The bulk material properties are: Young’s Modulus E =
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(a) RANDOM s̄ FIELD FOR
SVE1 × 1

(b) RANDOM s̄ FIELD FOR
SVE2 × 2

(c) RANDOM s̄ FIELD FOR
SVE4 × 4

(d) RANDOM s̄ FIELD FOR
SVE8 × 8

(e) RANDOM s̄ FIELD FOR
SVE16 × 16

FIGURE 7. THE FIRST REALIZATION OF KL-
GENERATED RANDOM FIELD MESHES FOR FRACTURE
STRENGTH s̄ (in MPa) WITH RESPECT TO DIFFERENT
SVE SIZES.

3.24 GPa, mass density ρ = 1190 kg/m3, and Poisson’s
ratio ν = 0.35. The values of fracture strength s̄(x) are
extracted from the independent KL random field solution
discretization. The fracture strength equation parameters
used in the SVE sampling algorithm are fracture tough-
ness Kc = 1.5MPa

√
m and coefficient α = 1

4 . The initial
and boundary conditions are specified consistent with dis-
placement field u(~x,t) = (u1(~x,t), u2(~x,t)) = (ax1t, 0.0)
where a > 0 and (x, t) is the spacetime coordinate of a
point. This corresponds to a spatially uniform stress field
in x1 direction, a condition that will no longer hold after
the nucleation/propagation of the first crack. As will be
discussed below, this uniform stress field very well demon-

strates the shortcoming of models that use a spatially con-
stant fracture strength. For the following results, the value
of a= 1.062/ms is chosen.

Comparative study: random vs homogeneous
fracture strength fields To understand the effect of in-
corporating randomness into a fracture model of quasi-
brittle material, fracture solutions generated from the use of
a spatially homogeneous fracture strength field is compared
to solutions which facilitate KL-generated random fracture
strengths. Specifically, the first KL mesh realizations for
1× 1 and 8× 8 SVEs are used for nonuniform fields for s̄;
cf. Figures 7a and 7d.

FIGURE 10. HOMOGENEOUS SOLUTION DEFORMED
SHAPE AT TIME, t≈ 3.9 µs.

We first study the development of the SVE1×1 fracture
network to demonstrate how the variability of the fracture
strength influences random nucleation locations as well as
fracture patterns characteristics. Figure 8 shows the visu-
alization of intermediate fracture solutions on deformed ge-
ometry. The color and height fields correspond to strain and
kinetic energy densities, respectively. As the solution time
progresses a clear correlation between the fracture strength
distribution and the site of fracture nucleation is demon-
strated; cf. Figure 7a. As the boundary loading increases
cracks accelerate and characteristics of brittle fracture such
as microcracks / crack bifurcations are observed.
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(a) TIME t= 7.250 µs. (b) TIME t= 7.875 µs. (c) TIME t= 8.625 µs.
FIGURE 8. A SEQUENCE OF FRACTURE SOLUTION VISUALIZATIONS FOR SVE1 × 1 mm.

(a) SVE1 × 1, TIME t= 9.25 µs. (b) SVE8 × 8, TIME, t= 8.65 µs. (c) HOMOGENEOUS s̄, TIME t= 3.9 µs.
FIGURE 9. FRACTURE SOLUTION VISUALIZATION WITH VARYING FRACTURE STRENGTH RANDOMNESS.

FIGURE 11. SVE1 × 1 SOLUTION DISCRETIZATION AT
TIME, t≈ 9.648 µs.

In Figure 9 the effect of SVE sampling window size, and
consequently correlation length scale, on developed fracture
patterns is studied. As the sve size increases, there is a de-

crease in the degree of spatial variation of the strength val-
ues and potentially larger areas of weaker strength. Frac-
tures based on 1× 1 mm SVE homogenization in Fig. 9a
are closer to what is expected from brittle fracture by form-
ing distinct cracks with microcracking and crack branching
events. The solution for 8× 8 mm SVE homogenization
are shown in Fig. 9b; as can be seen there is an excellent
agreement between regions with fracture and those with
lower fracture strength s̄ from the first realization used in
Fig. 7d. Within these large weaker areas with almost the
same fracture strength, greater number of nucleation sites
occur resulting in clusters of relatively smaller cracks. Fi-
nally, Fig. 9c demonstrates fracture pattern predicted when
a homogeneous fracture strength is used for the entire do-
main; the fracture network can be better seen in Fig. 10,
where the deformed solution geometry represented by lin-
ear segments is color–coded based on a scalar damage value
(blue segments are undamaged and red segments are beyond
a critical damage value). The fracture network is densely
populated compared to the SVE1× 1 case; also, since the
domain contains no variation in fracture strength value, the
location of these fracture sites is merely based on numeri-
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cal errors in the FEM solution rather than microstructure
variations.

The importance of mesh adaptivity is demonstrated in
Fig. 11 for SVE1×1 results, where crack segments are rep-
resented by red 2D line segments in the space front; adap-
tive operations enable exact tracking of crack direction and
accurate resolution of fracture process zone size.

CONCLUSION
SVEs and the moving window approach were used to

derive the statistics of a scalar fracture strength field for do-
mains with random distribution of microcracks. The Inverse
Transform Method was used to transform the derived non-
Gaussian random field to a standard normal field to enable
the generation of statistically consistent random fields with
the Karhunen-Loève method, and to transfer the generated
random field back to its non-Gaussian form. The fracture
simulations, obtained by the aSDG method, demonstrated
the effect of the size of SVE on fracture formation where
microcracking, crack branching and other features of brit-
tle fracture were more evident with smaller SVE sizes.
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