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Abstract

The radiative transfer equation for a problem that involves
scattering, absorption and radiation is solved using space-
time discontinuous Galerkin (SDG) method. The strength
of finite element method to handle scattering problems
in heterogeneous media with complex geometries is well
known. Adaptive operations in spacetime facilitates very
accurate and efficient solution algorithm. We investigated
the accuracy of the SDG method by using the method of
manufactured solutions. For the case of harmonic phase
functions we illustrate how the L2 norm error decreases
with the choice of high order polynomial and more refined
element size. Key merits of the use of SDG for our prob-
lem enamates from its linear solution cost, and the ability
to obtain the solution for a wide frequency spectrum in one
time domain simulation.

1 Introduction

Several techniques exist for wave propagation through tur-
bulent flows. Although such flows can be well described
by Navier-Stokes equations, any further understanding of
the characteristics of the flow is quite difficult. Even direct
numerical simulations do not help, provided one takes a sta-
tistical perspective. Wave propagation through such a flow
is then described by a stochastic differential equation. Per-
haps the simplest and most intuitive method to solve such
a problem is the radiative transfer approach [1, 2] in the
mesoscopic limit. Here one seeks the solution for the sec-
ond moment of the wave function. An important merit of
the RT approach is that all the key parameters of the equa-
tion are measureable quantities. This is the main reason
that the RT approach is very popular in numerous disci-
plines. For our application, the RT approach is most appro-
priate because it offers a unified framework under which,
scattering, emission and absorption are incorporated in a
self-consistent manner.

There exist in the literature numerous algorithms for solv-
ing RT equations. Most of them are applicable to plane par-
allel geometries [3], [4] under frozen turbulence assump-
tion. In contrast, our problem is truly three-dimensional.
Analytical solutions of RT equations is available only in a
few simple problems. For most others, one has to resort

to numerical algorithms. Among the classical numerical
methods available, the finite element method is most appro-
priate because of its ability to deal with complex geometries
and heterogenous media. In our application, the dimension
of the flow region is very large in terms of signal wave-
length. A multitude of scales of fluctuation is involved in
the flow region. Also, the scales of fluctuations and have a
large spatial variation. Also, note that it is very expensive
to carry out classical FEM computation for wave propaga-
tion of a wide band signal through the flow. In view of all
these facts we have employed a space-time discontinuous
Galerkin method [5] for our problem.

2 Radiative Transfer Formulation

Radiative transfer theory provides a simple and unified
framework for self-consistently incorporating scattering,
absorption, and emission in the flow problem. In this for-
mulation, the radiant intensity is governed by the following
radiative transfer equation:

ŝ ·∇III(~x,ω, ŝ)+
[
ηηηs(~x,ω, ŝ)+ηηηa(~x,ω)

]
III(~x,ω, ŝ)

−~S(~x,ω, ŝ)−
∫

ŝ P̄PP(~x,ω, ŝ← ŝ′)III(~x,ω, ŝ′) ds′ = 0, (1)

where the unknown vector III includes the radiation inten-
sity, ηηηs and ηηηa are the material dependent scattering and
absorption coefficients respectively, ~S is the emission term,
and P̄PP is the scattering phase function. Since the numerical
solver that will be able to tackle this general equation is to
be developed in stages, this work will focus on the scalar
version of the above equation with rectangular geometry
which is as follows:

µ ·∇zI(z,µ)+ηI(z,µ)−S(z,µ)

−
∫ 1

−1
P̄(z,µ ← µ

′)I(z,µ ′) dµ
′ = 0. (2)

where the coefficient ηηη is the summation of the absorption
and scattering coefficient (i.e. η = [ηa(µ)+ηs(z,µ)]) for
brevity.

3 Discontinuous Galerkin Weighted Resid-
ual

The finite element method is used to approximate the in-
tensity I through the definition Ih = HHH1×n · aaan×1, where HHH



Figure 1. 1D Discontinuous Meshing

is a vector of basis functions and aaa are coefficients of un-
known values. The above RTE can then be discretized over
a finite element domain. It is important to note two main
differences between the conventional Galerkin and discon-
tinuous Galerkin methods as it relates to how discretization
is carried out henceforth. The conventional FEM utilizes
nodal type degrees of freedom (dof) with continuity of dof
solutions being enforced. The value at each dof ai is the
value of the underlying unknown, e.g., I, at the coordinate
corresponding to that dof location. For example, in figure 1
the black solid circles correspond to where element nodes
for a continuous FEM would have been located. All nodes
at one position have the same value for I. For instance, at
coordinate (zi,µi) the value of I is the same for all four el-
ements at that corner. The nodal continuity of continuous
FEMs dictates the form of shape function HHH. Due to conti-
nuity requirement and noting Ih = HHH1×n ·aaan×1, Hi takes the
value of unity at element node i and zero at other nodes.

For DG methods, the element continuity is not enforced at
element nodes. This concept is visualized in figure 1. Con-
tinuity for DG methods are built in through the enforcing of
’jump conditions’ across element interfaces. For an nth or-
der approximation, the components of the shape functions
Hi are chosen such that they span the space of nth order
polynomials. An example of this concept can be seen using
a 2D quadrilateral DG element. For a linear element the so-
lution at any location ~x = (x1,x2) within the discontinuous
Galerkin element is then wh

e(~x) = a0+a1x1+a2x2+a3x1x2.

4 FEM Formulation

The weighted residual (WR) of the finite element formula-
tion is formed by expressing the solution I(z,µ) =HHH(z,µ)aaa
and multiplying the partial differential equation (PDE) (2)
by the weight function ĤHH.

R =
∫

Ω

ĤHH
[
µ ·∂z(HHH ·aaa)+ [ηa(µ)+ηs(z,µ)]HHH ·aaa

−S(z,µ)−
∫ 1

−1
P̄(z,µ ← µ

′)(HHH ·aaa)′ dµ
′
]

dA

+
∫

∂Ω

ĤHH
(

I∗− (HHH ·aaa)
)

n̂z dX = 0. (3)

where Ω and ∂Ω are the interior and the vertical bound-
aries (at z= [zmin,zmax]), respectively. The term (I∗−I)n̂z =
(I∗ − (HHH · aaa))n̂z is the previously mentioned jump condi-
tion which enforced the continuity between each element;
the jump condition is imposed on all vertical (constant z)
element interfaces. This equation can then be written on
an element-wise basis using a Gauss quadrature coordi-
nate system to perform numerical integration for a sim-
ple quadrilateral. To construct that linear system of equa-
tions that will be solved the above weighted residual is
solved element-wise and all stiffness type terms (terms de-
pendent of unknown coefficient vector aaa) and force type
terms (terms independent of unknown coefficient vector)
and placed into their global correspondents. Each of the
above terms are placed into a local stiffness and force tensor
which is then transferred to a global stiffness K

¯
and force FFF

tensor for the system on form:

K
¯

aaa = FFF . (4)

For Ki j, the indices i, j represent a block matrix within the
tensor K that is a result of the outer product of shape func-
tion for element i and element j (i.e. Ki j

(n×m)
= H i

(1×n)⊗
H j
(1×m)

).

5 Method of Manufactured Solution

Verification of the code is carried out using the procedure
known as Method of Manufactured Solution (MMS). MMS
assumes a known function form (exact solution) such that
I(z,µ) = f (z,µ). This assumed exact solution is then im-
posed into the 1D RTE which is transposed to determine a
form of the source term S. This source term then is used
within the FE implementation.The boundary conditions are
also defined as being exactly the assumed exact solution
I(z,µ) = f (z,µ) at boundary coordinates (z∂Ω,µ). Assum-
ing f (x) is a polynomial belongs to discrete solution space,
the FE solution Ih(z,µ) should recapture the solution given
by f (z,µ). However, due to finite precision errors there will
be very small discrepancies between the two solutions that
depend on machine precision. In the following examples,
the two solutions are compared point-wise with a relative
tolerance of ε = 1E−6. All the test cases below share the
same spatial(1D)×angle mesh(1D) mesh. It is important to
note that each spatial layer z[i] and angle layer µ [i] are subdi-
vided into three bands (elements) and each layer is assigned
different and independent material properties (η [i]

a , η
[i]
s ) to

ensure discontinuity in layers for code verification. Utiliz-
ing this setup, the two cases are characterized by a zero
and non-zero Phase function P̄(z,µ ← µ ′) within equation
2 respectively. For simplicity, the assumed exact solutions
are only distinguished by angular layers; all spatial layers
within a given angular layer will be assigned the same exact
solution based on this angular layer.

Test case for P̄(z,µ ← µ ′) 6= 0
For a nonzero phase function equation 2 can be rewritten in



terms of the source S(z,µ) as:

S(z,µ) = µ ·∇zI(z,µ)+ηI(z,µ)−
∫ 1

−1
P̄(z,µ ← µ

′)I(z,µ ′) dµ
′. (5)

The prescribed Phase function used in this case is of
the following polynomial form with z, µ , and µ ′ orders
2, 1, and 2, respectively:

P̄(z,µ ← µ
′) =4.0+4.2∗ z+11.2∗ z2−10.3∗µ +4.0µ ∗ z

+3.3∗µ ∗ z2−3.1∗µ
′+2.5∗µ

′ ∗ z+4.1∗µ
′ ∗ z2

−5.1∗µ ∗µ
′−2.6∗µ ∗µ

′ ∗ z+1.3∗µ ∗µ
′ ∗ z2

−1.6∗µ
′2 +2.1∗µ

′2 ∗ z−12.1∗µ
′2 ∗ z2

−15.2∗µ ∗µ
′2−7.8∗µ ∗µ

′2 ∗ z−2.5∗µ ∗µ
′2 ∗ z2

For this more complex problem, each angle layer
µ [i], for i = 1, · · · ,4 is assigned identical assumed exact so-
lution of the following polynomial form:

I[i] = f [i](z,µ) = 4.0+4.2∗ z+11.2∗ z2−10.3∗µ +4.0∗ z∗µ

+3.3z2 ∗µ−3.1∗µ
2 +2.5∗ z∗µ

2 +4.1z2 ∗µ
2, for i = 1, ..,4

For this case all elements in the spatial layers j and in the
angular layers i are interpolated with second order basis
k = 2 for z[ j],and k = 2 for µ [i] respectively. With the above
exact solution forms and their corresponding source terms
defined by equation 5, the following solution is generated
as visualized in figure 2.

Figure 2. Visualization of solution for code verification
case of non-zero phase function

6 Convergence Study

Utilizing the above method of manufactured solution an er-
ror analysis can be performed to ensure that the numerical
solution convergences to the exact solution and to obtain
the corresponding convergence rate. We use the L2 norm
of the point-wise error E between the discrete and the exact
solution to characterize numerical error,

point-wise error: E = Ih(z,µ)− Iexact(z,µ)

L2 norm of error: L2(E ) =

√∫
Ω

||E ||2 dΩ

=

√∫
Ω

(Ih(z,µ)− Iexact(z,µ))2 dΩ.

For the exact solution of a polynomial form, it is sufficient
to evaluate the absolute error at arbitrary points within each
finite element to realize that the numerical solver is able to
capture the exact solution. The error generated in this case
is dominated by that due to finite precision; this error is
dependent on the computational machine and is on an order
of magnitude that is essentially negligible. For the case of a
non-polynomial form (e.g. harmonic form) exact solution,
the error induced by finite precision is negligible compared
to discretization error.

The convergence of the solution generated by the numeri-
cal solver is simply verified by determining the slope β p of
the linear equation derived from interpolation of a data set
of refined element size ( h

n , n = 1, ..,∞) and average error
value pairs on a logarithmic scale. For a specific element
interpolation polynomial order p, the convergence rate (the
slope) should be equal to the value of the polynomial or-
der plus one (i.e. β p+1 = p) for this problem and L2 error
norm.

Figure 3. Convergence study for harmonic exact solution
and harmonic Phase Function; P̄(z,µ ← µ ′) 6= 0

Figure 3 shows a convergence study outcome utilizing an
exact solution and phase function both of harmonic forms
given as:

Iexact(z,µ) = sin(π
z
L
)∗ sin(πµ)

P̄(z,µ ← µ
′) = ηs(z,µ)∗ cos((µ−µ

′)
π

2
)

,where L is the length of the element in the spatial z coordi-
nate direction. The solution is seen to be convergent as the
slope of each linear interpolation matches the basis order
used to generate the numerical solution.

7 Point source implementation

The solver was implemented with the capability to have
point sources SI(z̄, µ̄) both on the boundary and interior of



(a) Boundary point source for
4×4 mesh

(b) Boundary point source for
10×10 mesh

Figure 4. Radiation from a Point Source on the Boundary

the domain. For a source term at point (z̄, µ̄), the source
term value at any arbitrary point within the computational
domain at point (z,µ) with respect to the reference source
can be written as:

S(z,µ) = SI(z̄, µ̄)δ (z− z̄)δ (µ− µ̄) (6)

where SI(z̄, µ̄) is the intensity of the point source.

Recall the weighed residual term containing the source
term: ∫ 1

0
∆z
∫ 1

0
∆µS(z,µ)ĤHH(ξz,ξµ) dξµ dξz

substituting equation 6 into this weighted residual terms
yields the following:∫ 1

0
∆z
∫ 1

0
∆µĤHH(ξz,ξµ)SI(z̄, µ̄)δ (z− z̄)δ (µ− µ̄) dξµ dξz

which further simplifies into a term that contributes to the
global force tensor as

F = ĤHH(ξz,ξµ)SI(z̄, µ̄)

evaluated within elements that contain the global point
(z̄, µ̄). An example of the point source addition was per-
formed in which the point source was placed on the left
boundary of the domain and was of magnitude 10, specifi-
cally

SI(z̄, µ̄)(0.00,0.75) = 10.

The left boundary was subject to a vacuum (homogeneous)
boundary condition,

I(0.00,µ) · n̂z = 0

and the right boundary was subject to a reflective boundary
condition,

I(1.00,−µ) · n̂z = I(1.00,µ) · n̂z.

the scattering coefficient ηs(z,µ) was defined to be zero for
the domain resulting in a zero phase function value. The
results of this example can be seen in figure 4.

An issue that can be seen here is about the point source
location, one that is common within finite element imple-
mentation, is error due to numerical overshoot and under-
shoot near the point source. This error could be mollified
by such means as imposing artificial diffusion but we find
that refining the mesh results in the error being localized
and negligible.

8 Conclusions

Wave propagation through turbulent flow that involves scat-
tering, absorption, and radiation is a complex problem. A
statistical approach is quite appropriate for such problems.
When the wavelength is much larger than the turbulence
scale, but small compared to the propagation size of the
problem, the radiative transfer theory offers a simple and ef-
ficient representation of the physical processes. This equa-
tion describes the dynamics of the second moment of the
radiation intensity in phase space. Our problem has multi-
ple scales and complex geometries and heterogeneities. We
employed the space-time discontinuous Galerkin method to
solve this problem. This method offers a fast and accurate
solution to our problem. We demonstrated the accuracy and
convergence of our algorithm using the method of manu-
factured solutions. Although the problem taken for illustra-
tion is relatively simple the benefits of our algorithm will
be more pronounced for more complex problems. We will
demonstrate this by considering more complex geometries
at the conference.
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