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Abstract—The radiative transfer equation (RTE) for a plane-
parallel problem involving scattering, absorption and radiation
is solved using the discontinuous Galerkin (DG) finite element
method (FEM). Both space and angle directions are discretized by
the DG method. The problem is formulated for nonzero phase
function. The method is validated against exact solutions, and
compared with other space-angle and hybrid FEMs for a few
benchmark problems. The performance of the method is also
studies for the solution of problems with discontinuous solution.

I. INTRODUCTION

The radiative transfer equation (RTE) describes the inter-
action of radiation in an absorbing, scattering medium. Two
of the most popular solution methods for these transfer equa-
tions are the Discrete Ordinate (SN ) method and Spherical
Harmonic (PN ) method. With both SN and PN methods,
one popular method for discretizing the spatial domain is the
Galerkin finite element method (FEM), see for example [1].
One disadvantage of Galerkin FEMs in solving the radiative
transfer equation in that it cannot handle discontinuities in
the solution. Discontinuous Galerkin (DG) methods relax the
continuity constraint of continuous FEMs, in that jump in
solution between elements not only is enforced weakly but also
is based on wave propagation direction. Hybrid methods with
DG discretization in space are presented for SN [2] and PN
[3] discretization in angle direction. We present a formulation
wherein both space and angle directions are discretized by a
DG formulation of a 1D plane-parallel RTE problem.

II. FORMULATION

For the 1D scattering problem, the plane-parallel radiative
transfer equation can be written as,

µ
dI

dz
+ βI − σs

2

∫ 1

−1
Φ(µ, µ′)I(z, µ′)dµ′ = S (1)

where µ is the direction cosine, I(z, µ) is the radiative
intensity, S is the source term, and Φ(µ, µ′) is the anisotropic
scattering phase function. The values β = κη + σs, κη , and
σs, are extinction, absorption, and scattering coefficients.

The partial differential equation (PDE) is enforced on the
square domain (z, µ) ∈ Ω = (z, z̄) × (−1, 1), where z
and z are the minimum and maximum values of the spatial
coordinate z. The boundary conditions are specified on inflow

boundaries for I which are comprised of µ > 0 and µ < 0
for z = z and z = z̄, respectively.

Fig. 1. Demonstration of region of applicability of residuals in z, µ) domain.

Figure 1 shows an m by n tensor product discretiza-
tion of Ω, where (z, z̄) and (−1, 1) are discretized into
{z0, z1, · · · , z} and {µ0, µ1, · · · , µn}, respectively, for z0 =
z, zm = z̄, µ0 = −1, and µn = 1. In a DG formulation,
residuals (errors) must be specified both in the interior and
on the boundary of elements. For an element Q ∈ Ω, these
residuals respectively are,

RQ = µ
dI

dz
+ βI − σs

2

∫ 1

−1
Φ(µ, µ′)I(z, µ′)dµ′ − S (2a)

R∂Qz
= µ(I∗ − I) (2b)

where (2a) is enforced inside Q and (2b) only on vertical
boundaries of Q in fig 1 since the PDE (1) only has partial
derivatives with respect to z. Finally, the target value I∗ is
always specified from the upstream value of the wave equation
(1) in that in the upper half (µ > 0) I∗ comes from the left
boundary condition or for an interior element such as Q is
specified from the trace of the neighboring element on its left
edge. For all upper half elements I∗ = I on their right edge.
That is, (2b) is only non-trivially enforced on the left edge of
elements. For the lower half elements the same argument hold
with waves moving from right to left, thus enforcing (2b) only
on the right edge of elements. Finally, the discrete weak form
is obtained by weighted residual formulation of (2),∫
Q Ǐ .

{
µdI

dz + βI − σs

2

∫ 1

−1 Φ(µ, µ′)I(z, µ′)dµ′ − S
}

dzdµ

+
∫
∂Qz

Ǐ .µ(I∗ − I)dµ = 0 (3)



where the weight functions Ǐ and trial solution I are polyno-
mials of order p in both space and angle, interpolated with
respect to a local coordinate system.

III. NUMERICAL EXAMPLES

Consider a slab of thickness L with space dependence
scattering coefficient, σs(z) = z/L, and a unit extinction
coefficient, β = 1. The anisotropic phase function is given by
Φ(µ, µ′) =

∑M
m=0 amPm(µ)Pm(µ′), where am are specified

constants, Pm are Legendre polynomials. The number of terms
M = 7 and coefficients as chosen the same as those in [4].
Constant boundary conditions of Ī = 1 and Ī = 0 are enforced
on the top-left and bottom-right boundaries, respectively.

The basis order in both space and angle is p = 4. The
domain is discretized with a coarse and non-uniform 6 × 8
grid with finer elements near µ = 0 to resolve the strong
gradients. The distribution of radiative intensity in spacial and
angular domain is shown in fig. 2 obtained by the DG and
least-square finite element method [4] methods, respectively.
It shows that DG results are in agreement with LS results.

(a) DG (b) LS [4]

Fig. 2. Contour plot of radiative intensity, I(z, µ), in space-angle domain.

The second problem demonstrate the capability of a DG
formulation in resolving strong discontinuities in solution.
Herein, a delta source term, S(z = 0.375, µ = 0.75) = 10,
is applied in a domain with Rayleigh scattering. Vacuum and
reflective boundaries conditions are used on the top-left and
bottom-right boundaries of the domain.

The exact solution (propagation of a delta ray from z =
0.375+, µ = 0.75 and its reflection along µ = −0.75) cannot
be exactly captured in discrete setting, given that the solution
is not a function and in addition FEMs are often discretized
by polynomials. With continuous FEMs there is an additional
challenge where due to continuity constraint between elements
the intensity propagates leftward from z = 0, µ = 0.75.

Our results, not reported here, demonstrate that direct in-
tegration of delta point source within an element results in
negative intensity when p > 0 is used to interpolate I . To
remedy this a constant average value for S is used over the
elements over which the point source is applied.

Figure 3 shows the solution for a 32× 64 grid in space and
angle, interpolated with p = 3 elements. As can be observed
the intensity propagated to the right from its source at z =
0.375, µ = 0.75 while it decays. As expected, the ray reflects
and continues in the bottom have around µ = −0.75. Due to
Rayleigh scattering, small values of I are observed at angles
other than those covered by the source term and its reflection.

Fig. 3. Scattering from a point source in a Rayleigh scattering medium.

IV. CONCLUSIONS

The cleanness of the solution, e.g., the absence of nonphys-
ical backscattering, overshoot or undershoot for the source
term problem, is the testament to the appropriateness of
the DG method for the RTE. We plan to employ the other
advantages of the DG method in upcoming works where
solution details, e.g., point sources, can be efficiently captured
by h-adaptivity and p-enrichment; unlike continuum FEMs no
transition element are required.
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