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ABSTRACT: The fracture response of rock, as a quasi-brittle material, is highly sensitive to its microstructural design.
We present a statistical damage formulation to model dynamic rock fracture. The damage model is rate-dependent
and the corresponding damage evolution is a dynamic equation which introduces a timescale to the problem. The
introduced timescale preserves mesh objectivity of the method with much less computational efforts in comparison with
other conventional non-local formulations. We define a statistical field for rock cohesion to involve microstructure effects
in the proposed formulation. The statistical field is constructed through the Karhunen-Loève (KL) method. The damage
model is coupled with the elastodynamic equation. The final system of coupled equations is discretized by an asynchronous
Spacetime Discontinuous Galerkin (aSDG) method. Robustness of the proposed formulation is shown though dynamic
fracture simulation of rock under uniaxial compressive load. The numerical investigation indicates the importance of load
amplitude and microstructure randomness on failure response of rock.
Acknowledgments: The authors gratefully acknowledge partial support for this work via the U.S. National Science
Foundation (NSF), CMMI - Mechanics of Materials and Structures (MoMS) program grant number 1538332.

1 INTRODUCTION

Brittle materials have a significant role in various ap-
plications: glasses, ceramics, concrete, bone, etc. These
types of materials are susceptible to sudden rupture by
cracking as they have many microdefects and microcracks.
Before reaching the ultimate load capacity of a material
sample, existing microcracks and microdefects propagate
at microscale. At ultimate capacity, microscale degra-
dation processes coalescence and cause fracture initiation
at macroscale. Macroscale degradation continues under a
softening process until the material completely fails.

An important aspect in fracture of rock, and in general
quasi-brittle materials, is the effect of microstructure on
their fracture response. As shown in [1] due to the high sen-
sitivity of these materials to their defects, even for the same
loading and geometry set-up, different fracture patterns
can be observed. Same observations are made in [2] where
high variations on material response, especially beyond
elastic range—e.g., ultimate load and fracture energy—
were observed due to sample to sample variations. Size
effect is another consequence of the high sensitivity of re-
sponse to microscale defects, as for example demonstrated
in [3, 4]. In fact, the Weibull’s weakest link model [5, 6]
has proven very effective in capturing the size effect and
statistical variation of fracture strength. We have used
the Weibull model in the context of an interfacial dam-
age model to capture statistical fracture response of rock,
in hydraulic fracturing [7], fracture under dynamic com-

pressive loading [8], and in fragmentation studies [9, 10].
However, as will be discussed below, these models first can
become quite expensive due to the use of a sharp inter-
face model for fracture and second are not derived from a
homogenization approach.

Sharp interface (SI) models represent fracture on crack
surfaces. Some examples include the linear elastic fracture
mechanics (LEFM) model, cohesive models [11, 12], and
interfacial damage models [13–15]. Each of these models
has its own advantages/disadvantages. SI models explic-
itly track real pattern of fractures, but their implementa-
tion is cumbersome and their computational cost is high.
Also, in applications such as multiscale methods, it is hard
to track explicit discontinuities in all scales of interest. If
it is even possible, the computation cost will be extremely
high. These facts have lead many efforts to develop frac-
ture models based on continuum mechanics.

Bulk/continuum (BC) models use damage mechanics
to approximate discontinuous fractures with an equivalent
continuum domain. Smeared crack approach was formu-
lated in [16] as the earliest BC model to simulate fracture in
concrete. Such continuum approaches have several advan-
tages: Simple integration with other numerical methods,
fast implementation, and proper utilization in multiscale
analyses. The main drawback of BC models is the overes-
timation of fracture sharpness. Although this issue is not a
crucial challenge in many applications, there exists an en-
hanced type of BC models entitled the phase field [17–19]
method to recover the sharpness in a continuum fashion.

In dynamics analysis of brittle materials, transient as-
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pects of failure mechanism have considerable effects on
failure response. Experimental investigations show an in-
crement in load rate increases strength and fracture en-
ergy [20,21]. However, most relevant numerical studies are
restricted to quasi-static conditions; for example in [22,23]
a Weibull model is used to set fracture parameters of a
damage model, but the analysis is restricted to static con-
ditions. The lack of study in dynamics conditions leads
us to develop an entirely transient formulation for coupled
solid-damage mechanisms in rock.

We will use a stochastic approach to model the effects
of inhomogeneity and microstructural randomness in dy-
namic fracture of rock. The use of a bulk damage greatly
reduced the computational costs compared to our afore-
mentioned works in the context of an SI model. The use
of statistical models for high rates of loading is also moti-
vated by the results in [24] that demonstrate the very poor
performance of deterministic models in highly dynamic set-
tings. In the employed stochastic approach, model param-
eters are statistical fields constructed based on microscale
characteristics. In the method proposed here, we construct
a realization of the statistical field for rock cohesion based
on the well-known Karhunen-Loève (KL) method [25,26].

The statistical damage formulation is coupled to elas-
todynamic equations. As the system of equations is hy-
perbolic, we use the asynchronous Spacetime Discontinu-
ous Galerkin (aSDG) method; this method uses a front-
advancing algorithm, called Tent-Pitcher [27] to advance
the solution by solving one patch (a small collection of el-
ements) at a time, until the spacetime analysis domain is
completely solved. This results in a highly advanced nu-
merical method with local and linear solution properties
for the elastodynamic problem [28].

In the following sections, we will describe the proposed
damage model and KL method in §2. We will show an ap-
plication of the method in §3 for a compressive rock sample
to indicate the importance of incorporating randomness in
dynamics rock fracture. Finally, we will discuss the novel
contributions of this study in §4.

2 FORMULATION

In this section, we will focus on new aspects of the pro-
posed formulation. We will introduce the dynamic damage
formulation in §2.1 and §2.2. In §2.3, we will express the
effect of damage mechanism on the softening behavior of
rock. We will indicate the application of the KL method
in a statistical analysis in §2.4.

2.1 Rate-dependent Damage Evolution
Law

In dynamics problems, damage mechanism is not an in-
stantaneous phenomenon. It is more reasonable to take a
while for damage mechanism to be entirely activated for
material degradation process. The behavior is known as
the delay effect in damage initiation and propagation pro-
cesses. The dynamics damage formulation [13, 29, 30] in-
troduces delay aspects into damage mechanism. A time

delay factor (τc) is used to derive the evolution equation,

dκ

dt
=
{

1
τc

[ 1− e−a〈κf−κ〉] if κ < 1
0, otherwise

(1)

where κ is an internal variable indicating damage level
(0 ≤ κ ≤ 1), κf is the driving force for κ evolution, a is
an evolution parameter indicating the brittleness of mate-
rials in damage propagation, and 〈.〉 is Macaulay brackets
representing the positive operator.

The damage force term, κf , significantly affects the
mechanism of damage initiation and propagation. The
term should be defined in a proper way to capture charac-
teristic behavior of materials, in terms of their dominant
failure modes. There are numerous definitions for κf for
various applications and material models. We will discuss
an appropriate definition of the function for brittle rock
materials in the next sub-section.

Figure 1: The effect of brittleness coefficient a in the
rate of damage evolution. The higher slope shows
faster activation of damage mechanism.

Figure 1 shows effect of the brittleness factor, a, in
the damage evolution rate. A value equal to 100 repre-
sents a highly brittle material behavior, since any damage
force value (〈κf − κ〉) produces the maximum rate of evo-
lution (dκdt = 1). However, a value equal to 0.1 represents
a viscoelastic material behavior, since it takes some time
to reach to the entire activation of damage evolution. In
the current study, we focus on quasi-brittle materials in
rock mechanics applications where a value equal to 10 is a
proper selection.

The factor of 1
τc

in the evolution law Eq. (1) has two
essential contributions to remedy some drawbacks of clas-
sical damage models. First, it controls damage evolution
not to be an instantaneous phenomenon; a higher value of
τc introduces more delay behavior in the model. Second,
the timescale τc transforms a local damage formulation to a
non-local formulation in spacetime. The non-local behav-
ior preserves the mesh-objectivity of the proposed numer-
ical scheme. The idea is similar to conventional non-local
theories for spatial fields (quasi-static behaviors) which are
non-localized though a length scale parameter. The delay
method is preferable to those type of gradient-based or
integration-based non-local methods due to its much less
computational and implementation efforts.
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2.2 A Stress-based Damage Model Based
on Mohr-Coulomb Failure Criterion

Two dominant modes of failure in rock are shear and ten-
sion. Therefore, it is necessary to utilize a damage model
with both sources of the softening behavior. We devel-
oped a damage formulation based on the well-known Mohr-
Coulomb failure criterion to model shear-tensile degrada-
tion of rock.
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Figure 2: Mohr-Coulomb envelope at a failure stress
state.

According to fig. 2 based on the elastic stress tensor σ,
the Mohr-Coulomb failure criterion Y is defied as

Y (σ, c, φ) = R+ σave sinφ− c cosφ ≤ 0, (2)

R =
√

(σxx − σyy)2

4 + σxy2,

σave = σxx + σyy
2 ,

where c and φ are material cohesion and internal friction
angle, respectively. In the damage model, we define a dis-
tance of stress state from the Mohr-Coulomb failure en-
velope to express the corresponding potential for material
degradation as

β(σ, c, φ) = R+ σave sinφ
c cosφ , (3)

where β shows the tendency in material degradation such
that for values β ≤ (β = 1) material remains undamaged
where β is the lower limit of damage initiation. Damage
values corresponded to β < β < β̄ indicate non-zero levels
of the degradation, and β̄ is an upper-limit for β to recover
the maximum static damage limit. In static analysis, the
upper-limit β̄ corresponds to the maximum damage value
κmax = 1. So, we define the normalized damage force
function as

κf =
β − β
β̄ − β

. (4)

2.3 Stiffness Degradation by Damage
Value

The constitutive law of linear elastic materials for undam-
aged material is

σ = Cε, (5)

where C is the fourth order elasticity tensor and ε is the
second order linear strain tensor. However, in the case
of existing damage, an effective definition of stress tensor
(σeff ) is used in solid deformation analysis to incorporate
the corresponding material softening behavior. In our pro-
posed approach, we apply the damage effect on the pure
shear and hydrostatic tension parts of the elastic stress
tensor to define the effective stress tensor. Accordingly, we
first decompose the stress tensor into two parts of devia-
toric (σd) and hydrostatic (σh) stresses. Then, the effective
stress relation will be

σeff = (1− κ)σd + (1− κ)〈σh〉+ (σh − 〈σh〉), (6)

where the first term of the right-hand side shows the effect
of shear stresses and the second term represents the effect
of tensile stresses in material degradation processes. The
set of equations 1-6 represents an appropriate continuum
damage model to incorporate dynamics and rate effects of
the damage evolution into elastodynamics equation.

2.4 Realization of Stochastic Damage
Model Parameters

Material uncertainty is incorporated into the continuum
damage model by treating the isotropic cohesion c param-
eter as a spatially inhomogeneous random field c(x, ω) gov-
erned by probability structure ω. Bypassing the derivation
of statistics from some “real” material microstructure, the
statistical characteristics of the random cohesion field are
assumed to follow a certain point-wise statistics and covari-
ance function form. The random field is developed by en-
forcing a stationary covariance of γ-exponential form with
prescribed correlation length to control spatial variability
of the field. The distribution of the cohesion random field
is assumed to follow a log-normal Lognormal(µ, σ2) prob-
ability structure with mean exp

(
µ + σ2/2

)
and variance

[exp(σ2)−1] exp(2µ+σ2) of the log-normal field as material
model input.

Having knowledge of the underlying material statistics,
there are a number of methods that allow a scalar random
field approximation to be generated wherein the inherent
statistics are preserved. On such method is the Karhunen-
Loéve (KL) method which approximates a random field
ξ = ξ(x, ω) by an expansion of its covariance kernel; the
field is described by the series,

ξ(x, ω) = µξ(x) +
n∑
i=1

√
λibi(x)Yi(ω), (7)

where the denumerable set of eigenvalues λi and eigenfunc-
tions bi(x) are obtained as solutions of the Fredholm equa-
tion, i.e., the generalized eigenvalue problem (EVP), which
is detailed [31]. Due to the monotonically decreasing prop-
erty of the eigenvalue solutions, the truncated series with
an appropriately chosen n number of terms can precisely
represent the statics of the underlying random field while
converging to the infinite KL series limit as n → ∞. For
practical use of the KL method, the uncorrelated random
variables Yi must also be independent; this is valid only
if the random variables and consequently the random field
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ξ(x, ω) are Gaussian. This Gaussian requirement does not
hinder the use of the KL approximated random field as the
inverse transform method provides a means of transform-
ing one probability structure to another provided the cu-
mulative density function of both distributions are known a
prior ; this mapping is required to transform the KL Gaus-
sian random field approximation to an approximation of
the originally assumed log-normal distribution. Please re-
fer to [32] for an overview of the use of KL method in mod-
eling rock fracture strength and [10] for further elaboration
on the KL and eigen-pair solution procedures, particularly
for non-Gaussian fields.

3 NUMERICAL RESULTS

We show robustness of the proposed method by numeri-
cal analyses of a sample rock at different conditions. The
sample problem is under a uniaxial pressure loading at its
top and bottom edges, as shown in fig. 3. The geometry
is a rectangle with w = 0.08 mm and l = 2w = 0.16 mm.
The problem is in the plane-strain condition and material
properties are ρ = 2650 kg/m3, E = 65 GPa, ν = 0.27,
c = 4.7 MPa, and φ = 17◦ corresponded to density, elastic
modulus, Poisson ratio, cohesion and friction angle, re-
spectively. The time scale parameter is chosen equal to
τc = 0.03. The convergence criterion for the nonlinear
solver is based on the system energy norm and the corre-
sponding tolerance is 10−8. We utilize third order polyno-
mial basis functions for damage and displacement fields in
time and space axes.
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Figure 3: A pressurized sample with the ramp loading
at its ends.

The initial computational domains for the simulations
consist of three triangular meshes: coarse (8×16), medium
(16×32), and fine (32×64). These meshes, fig. 4, are used
to construct the spacetime solution manifold in the E2×R.
The time slabs are progressively generated based on wave
characteristics to obtain the best achievable performance
of the numerical method. The method has the advantage
of solving the discrete problem element-wise which is per-
fect for the parallel processing design.

(a) 8 × 16 (b) 16 × 32 (c) 32 × 64

Figure 4: Initial meshes for the simulations: (a)
Coarse; (b) Medium; (c) Fine.

In the following cases, the ramp time is tramp = 0.01 ms
and all the physical parameters are constant except load
magnitude Ppeak and material cohesion c. The effect of
load magnitude is investigated for two cases of the high
load Ppeak = 13.5 MPa and the low load Ppeak = 6 MPa.
In the study of the effect of randomness and inhomogene-
ity, the cohesion value is a random field with the mean
value equal to the homogeneous case (c = 4.7 MPa) and
the standard deviation of 2.35 MPa. The random field is
a realization based on the KL method with the correlation
length equal to 5 mm.

3.1 Mesh Objectivity
The sensitivity of elastic and damage results on the resolu-
tion of the underlying discrete grid, i.e., mesh sensitivity,
is a well-known problem for many bulk damage models.
As described before, the proposed damage formulation has
an inherent length scale which is coupled by a timescale
in dynamics fashion. To show that, we will compare the
damage evolution for two different meshes in fig. 5. The
chosen meshes are the coarse (fig. 4a) and medium (fig.
4b) meshes. The material properties are homogeneous and
loading magnitude is Ppeak = 13.5 MPa.

The results in fig. 5 indicate that both the meshes rep-
resent almost same responses for the damage evolution.
There exist two competing factors in the proposed dam-
age formulation in comparing with other mesh objective
damage formulations. First, the implementation effort is
less than integration-based non-local damage models. Sec-
ond, the computational cost is less than gradient-based
non-local damage formulations.

3.2 The Effect of Load Amplitude
We will show that load intensity is one of the critical fac-
tors in failure behavior of brittle materials. Again, in this
case, the material properties are homogeneous, and we just
consider two different load magnitudes.

Figure 6 shows the damage evolution at different times
for the low amplitude load. Figure 7 depicts the strain en-
ergy of the solid deformation at each corresponding time.
In this problem, two symmetric compressive waves travel
from top and bottom toward each other in the middle. Be-
fore the collision of the two waves, the solid energy is not
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(a) t = 13.9 µs (b) t = 24.7 µs (c) t = 36.1 µs (d) t = 13.9 µs (e) t = 24.7 µs (f) t = 36.1 µs
Figure 5: Damage responses at different times for two different meshes. Figures (a) to (c) correspond to the
coarse mesh and figs. (d) to (f) correspond to the medium mesh. The results are shown on the deformed mesh
which is magnified by the factor of 300. The values continuously vary from zero (blue color) to unity (red
color).

sufficient to produce any damage. However, when these
waves collide, they interact and double the stress wave
magnitude at the collision area. The increment in the en-
ergy causes the damage initiation at the potential zone.
Then, the damage zone progresses toward end edges of the
sample where the reflected waves travel.

Figures 8 and 9 show the damage and strain energy
density results for the high amplitude load case at various
times, respectively. For a better comparison, we tried to
present these results at time sequences close to the pre-
vious case, but as the wave magnitudes and propagation
patterns are distinct, presentation of the cases at same
time sequences does not clearly illustrate the entire dam-
age mechanism. In the high load condition, the solid en-
ergy produces damage earlier than the previous case, be-
fore the first collision of the two stress waves in the middle.
In this case, almost everywhere is damaged and the pat-
tern of damage evolution is entirely different from the low
load condition. The comparison shows how the damage
threshold, load amplitude, and transient effects can inter-
act with each other to get more realistic simulations. We
will consider the effect of damage threshold (e.g., material
cohesion), in the next case study.

Figure 12: A realization for random distributed cohe-
sion values with the correlation length of 5 mm.

3.3 The Effect of Randomness

The homogeneous assumption for brittle materials such as
rock is not reasonable as they have many defects and mi-
crocracks in their microstructure. Therefore, it is crucial to
incorporate these effects in the macroscale analysis to get
more reliable results. In this case, we focus on the effect
of microstructure on the material cohesion which is one
of the most important parameters in the dynamic failure
criterion used.

Figure 12 shows a realization of the underlying ran-
domness for the material cohesion of the sample. The re-
alization is constructed with 2000 terms of the KL series.
We used a fine mesh to have an adequate resolution for
capturing the underlying randomness.

Figure 10 and 11 show damage and strain energy
changes at various times, respectively. The simulations
are performed for the low amplitude load. The results
indicate the significant effect of randomness on elastody-
namic and damage field evolution in comparison with the
homogeneous condition in fig. 6 and fig. 7. The model per-
forms well to capture weakest points which are consistent
with the underlying random field, in fig. 12 weakest zones
are distinguishable by the blue color. The statistical dam-
age model is more consistent with SI models. The reason
is: First, damage initiation zones are point-wise (same as
fracture initiation locations); Second, damaged zones tend
to propagate in specific inclined directions rather than dif-
fuse around initiation points (narrower band in comparing
with a homogeneous damage model). These failure zones
qualitatively match with other numerical and experimental
observations [33–37] in that fractures propagate in specific
angles, i.e., ±(45◦±φ/2) where φ is the friction angle, with
respect to the loading direction.

Therefore, as recommended by [9], statistical models in
fracture analyses of brittle materials help not only improve
the reality of simulations but also remedy some numerical
challenges in fracture modeling such as diffusive responses
of BC models or instant ruptures of BC/IC models.
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(a) t = 13.9 µs (b) t = 24.7 µs (c) t = 36.1 µs (d) t = 42.2 µs (e) t = 48.2 µs (f) t = 53.4 µs
Figure 6: The damage evolution at various times for the medium mesh at the low load condition. The results
are shown on the deformed meshes which are magnified by the factor of 1000. The values continuously vary
from zero (blue color) to unity (red color).

(a) t = 28 µs (b) t = 30.7 µs (c) t = 36.7 µs (d) t = 42.2 µs (e) t = 48.2 µs (f) t = 53.4 µs

Figure 7: The strain energy distribution at various times for the medium mesh at the low load condition. The
results are shown on the deformed mesh which is magnified by the factor of 1000. The values continuously vary
from zero (blue color) to 2.5× 10−3 MPa (red color).

(a) t = 13.9 µs (b) t = 21.1 µs (c) t = 26.8 µs (d) t = 29.2 µs (e) t = 33.2 µs (f) t = 37.4 µs

Figure 8: The damage evolution at various times for the medium mesh at the high amplitude load. The results
are shown on the deformed meshes which are magnified by the factor of 300. The values continuously vary
from zero (blue color) to unity (red color).

(a) t = 13.9 µs (b) t = 21.1 µs (c) t = 26.8 µs (d) t = 29.2 µs (e) t = 33.2 µs (f) t = 37.4 µs

Figure 9: The strain energy distribution at various times for the medium mesh at the high amplitude load.
The results are shown on the deformed mesh which is magnified by the factor of 1000. The values continuously
vary from zero (blue color) to 2.5× 10−3 MPa (red color).
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(a) t = 13.9 µs (b) t = 21.1 µs (c) t = 29.2 µs (d) t = 33.2 µs (e) t = 37.4 µs (f) t = 40 µs

Figure 10: The damage evolution at various times for a random field of material cohesion with mean value of
c = 4.7 MPa and standard deviation of 2.35 MPa. The applied load is low. The values continuously vary from
zero (blue color) to unity (red color). The deformed mesh is magnified by a factor of 1000.

(a) t = 13.9 µs (b) t = 21.1 µs (c) t = 29.2 µs (d) t = 33.2 µs (e) t = 37.4 µs (f) t = 40 µs

Figure 11: The strain energy distribution at various times for a random field of material cohesion with mean
value of c = 4.7 MPa and standard deviation of 2.35 MPa. The applied load is low. The values continuously
vary from zero (blue color) to 2.5× 10−3MPa (red color). The deformed mesh is magnified by a factor of 1000.

4 CONCLUSIONS

In the current study, we formulated a new damage model
for brittle materials with the consideration of tensile
and shear failure modes. The transient damage evolu-
tion adopted from Allix’s model governs the irreversible
progress of damage in time. The transient model uses a
timescale to introduce the rate-dependency and preserve
the mesh objectivity. We proposed a statistical framework
through the KL method to include microstructure random-
ness of the material cohesion in the damage model. The
final system of hyperbolic equations is discretized in space
and time by the aSDG method. The aSDG method is well-
suited for hyperbolic system of equations to track wave
shocks precisely with complex meshes in the spacetime.
The final system of nonlinear equations is solved with the
Newton-Raphson method.

We showed the mesh objectivity of the method for
highly dynamic problems. The objectivity comes from the
timescale parameter τc which is equivalent to the length
scale parameter in non-local theories. We studied the ef-
fect of load amplitudes in the dynamic damage formula-
tion. The load amplitude has a significant role in the
damage mechanism and consequently the failure pattern of
brittle materials. The most important factor to get more
realistic simulations is the incorporation of microstructure
characteristics in brittle materials. The randomness of the
material cohesion indicates a dominant effect in the failure
pattern of brittle materials. We showed the statistical bulk

damage model produces a failure response which is more
consistent with interfacial fracture models.

There are a few extensions to the proposed fracture
model. First, the main focus in this study was determina-
tion of the initial stages of macroscopic failure, i.e., when
κ reaches unity in certain regions. In future work, we will
apply the same idea in [19] which uses a reduction factor
for the damage effect in the mechanical degradation pro-
cess in Eq. (6). This prevents κ reaching unity and enables
the continuation of analysis beyond the stages shown here.
Second, in Eq. (6) the effective damage-stage friction coef-
ficient is zero. We will improve the damage model to enable
some residual friction coefficient at full damage. This will
improve the predicted slip plane angles shown in fig. 10.

In this work, for the statistical analysis we assumed an
artificial statistics for rock cohesion. In future works, we
aim to use statistical volume elements (SVEs) to homoge-
nize both elastic and fracture properties of rock at differ-
ent length scales. Beyond the more physical representation
of these random fields, similar to [38] we will characterize
fracture strength as a function of the angle of loading. This
aspect will particularly be important in modeling the ef-
fect of bedding planes in rock fracture. In addition, we
aim to extend [39] to formulate an h-adaptive scheme in
spacetime that simultaneously controls the errors associ-
ated with elastodynamic and bulk damage problems.
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