
ARMA 18-1100

Random field realization and fracture simulation of rocks
with angular bias for fracture strength
Garrard, J.M., Abedi, R., Clarke, P.L.
Department of Mechanical, Aerospace & Biomedical Engineering, The University of Tennessee Space Institute, TN, USA

Copyright 2018 ARMA, American Rock Mechanics Association
This paper was prepared for presentation at the 52nd US Rock Mechanics / Geomechanics Symposium held in Seattle, Washington, USA, 24-27 June
2018. This paper was selected for presentation at the symposium by an ARMA Technical Program Committee based on a technical and critical review
of the paper by a minimum of two technical reviewers. The material, as presented, does not necessarily reflect any position of ARMA, its officers, or
members. Electronic reproduction, distribution, or storage of any part of this paper for commercial purposes without the written consent of ARMA
is prohibited. Permission to reproduce in print is restricted to an abstract of not more than 200 words; illustrations may not be copied. The abstract
must contain conspicuous acknowledgment of where and by whom the paper was presented.

ABSTRACT: Realistic fracture simulations in rock as a heterogeneous brittle material with significant inherent ran-
domness require the use of models that incorporate its inhomogeneities and statistical variability. The high dependence
of their fracture progress on microstructural defects results in wide scatter in their ultimate strength and the so-called
size effect. This paper proposes an approach based on statistical volume elements (SVEs) to characterize rock fracture
strength at the mesoscale. The use of SVEs ensures that the material randomness is maintained upon averaging of
microscale features. Because the fracture strength varies not just spatially, but also by the angle of loading, this work
includes angular variability to properly model a heterogeneous rock domain. Two different microcrack distributions, one
angularly uniform and one angularly biased towards a specific angle, are used to show that implementing angle into the
random field provides the most realistic fracture simulation. An adaptive asynchronous spacetime discontinuous Galerkin
(aSDG) finite element method is used to perform the dynamic fracture simulations.
Acknowledgments: The authors gratefully acknowledge partial support for this work via the U.S. National Science
Foundation (NSF), CMMI - Mechanics of Materials and Structures (MoMS) program grant number 1538332 and CCF -
Scalable Parallelism in the Extreme (SPX) program grant number 1725555.

1 INTRODUCTION

The behavior of quasi-brittle materials, such as rock, under
load is influenced by heterogeneity at several scales. In the
macroscale, different rock types, layers, and faults define the
overall system characteristics. At the microscale, networks
of microcracks can lead to a non-homogeneous fracture be-
havior under loading depending on the load angle. These
cracks and microstructural defects influence the material’s
peek and post-instability response, as shown in [Kozicki and
Tejchman, 2007, Yin et al., 2008] and fracture patterns even
under the same loading and geometry settings [Al-Ostaz
and Jasiuk, 1997]. Because these quasi-brittle materials do
not contain the energy dissipative mechanisms that most
ductile materials do, there is no method to re-balance the
stresses induced by the microcrack stress concentrations.
The size effect is a direct consequence of such high sensi-
tivity of the response to microscale defects, as for example
demonstrated in [Rinaldi et al., 2007, Genet et al., 2014].

When performing a fracture analysis, the rock hetero-
geneities can be modeled either explicitly or implicitly. Ex-
plicit models directly include inhomogeneities into the so-
lution scheme. An example is lattice modeling, detailed in
[Li, 2000], where a lattice of elements is used to represent a
particle network connected by springs. The main downside
to this approach is the small space and time scales required
to directly resolve the microstructure. Implicit methods, on
the other hand do not directly include microstructural de-
tails in the analysis and only incorporate their overall effect.
As an example, the Weibull’s weakest link model [Weibull,

1939, 1951] has proven very effective in capturing the size
effect and stochastic variations in fracture response. We
have used the Weibull model in the context of an interfa-
cial damage model to capture statistical fracture response of
rock, in hydraulic fracturing [Abedi et al., 2016], fracture
under dynamic compressive loading [Abedi et al., 2017a],
and in fragmentation studies [Abedi et al., 2017b, Clarke
et al., 2017]. However, the Weibull model only provides a
phenomenological characterization of fracture strength and
lacks the direct connection to material microstructure that
homogenization approaches provide, as discussed next.

Homogenization approaches derive macroscopic proper-
ties such as elastic moduli by solving the underlying prob-
lem in a Volume Element (VE). Similar approaches can also
be used to calibrate certain fracture models, see for exam-
ple [Taylor et al., 1986, Homand-Etienne et al., 1998, Shao
and Rudnicki, 2000, Lu et al., 2013]. A Representative Vol-
ume Element (RVE) is a smaller subset of a larger domain
that is still considerably larger than the microscale features
in question. In order to simulate the macroscopic response
of the material, the RVE must contain a large number of
micro-heterogeneities such that the statistical response cal-
culated from the RVE approaches the homogeneous macro
response of the domain. Two problems with the use of RVEs
in fracture analysis are the losses of spatial inhomogeneity
and sample to sample variations. On the other hand, Sta-
tistical Volume Elements (SVEs) are VEs that are small
enough to main both such variabilities. For example, SVEs
are used for statistical analysis of elastic [Baxter and Gra-
ham, 2000, Tregger et al., 2006, Segurado and LLorca, 2006]
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and fracture response [Koyama and Jing, 2007]. Moreover,
we formulated SVEs for rock fracture in [Clarke and Abedi,
2017] and by using SVE-based homogenized properties, in
[Clarke et al., 2017] we demonstrated the necessity of in-
corporating inhomogeneity in fracture strength; specifically
we showed that a homogeneous fracture strength field pre-
dicted nonphysical sudden and spatially ubiquitous frag-
mentation patterns.

For real materials, incorporating randomness of
strength in angle is also paramount, as materials fail based
on specific spatial and angular weaknesses within the ma-
terial. If the angle of loading of the material changes, so
too does the behavior of the material. For rock, bedding
planes make both elastic and fracture properties highly
anisotropic. There have been two main approaches to
model macroscopic anisotropies in rock fracture proper-
ties; Pietruszczak and Mroz [2000], Pietruszczak et al.
[2002] added a second order so-called microstructure ten-
sor to a stress-based general failure criterion for rock. On
the other hand, in [Pietruszczak and Mroz, 2001, Lee and
Pietruszczak, 2008, Shi et al., 2016] the parameters of well-
known failure criteria such as Mohr-Coulomb or Hoek-
Brown [Hoek and Brown, 1980] are made angle-dependent.

In this work, we extend our previous formulations of
SVE for microcracked material [Clarke and Abedi, 2017,
Clarke et al., 2017] by including the randomness in an-
gle. We follow the second aforementioned approach, in that
the parameters of a failure criterion, tensile strength in the
context of a Mohr-Coulomb model herein, are made angle-
dependent. The derivation of tensile strength follows the
approach in [Acton et al., 2018], where a uniaxial stress
load is applied at arbitrary directions around an SVE. To
show the importance of considering this randomness in an-
gle, two microcrack distributions, one uniform in angle, and
another biased towards a specific angle, are used in our nu-
merical analyses.

2 FORMULATION

In this section, a scheme is formulated which derives an ana-
lytic/computational representation of the microcrack distri-
bution of a rock structure and its fracture strength. Subsec-
tion one shows how the RVE domain is developed with mi-
crocrack distribution. Subsection two then defines the SVE
processing of the domain. Subsection three then details the
fracture strength calculations performed within each SVE.
Finally, a description of the asynchronous Spacetime Dis-
continuous Galerkin (aSDG) method is given, which is used
to perform dynamic fracture simulations for the given rock
domains.

2.1 RVE Characterization
A valid representative volume element (RVE) of a given
rock structure must be large enough to properly represent
the large number of micro-heterogeneities caused by micro-
cracks in the rock structure, while still being sufficiently
smaller than the overall macroscale structure. As the size

of the volume element decreases, the meso-scale RVE ap-
proaches the statistical volume element (SVE) regime. The
RVE domain size must represent the inhomogeneous frac-
ture strength field at the macroscale based on the statistics
of cracks in the RVE in the microscale.

For this paper, the RVE is represented by a rectangular
32-meter by 32-meter domain. Two different micro crack
distributions were created within the domain via a take-
and-place algorithm which generates the cracks and ensures
no crack intersections. The microcrack length for both dis-
tributions is assumed to follow a Weibull distribution. For
one distribution, the crack angle distribution follows a uni-
form distribution between 0 and 2π. The second domain
contains an angularly-biased crack distribution to show the
importance of introducing randomness of strength in angle
direction, which without this randomness creates an unre-
alistic fracture response.

2.2 SVE Characterization
Within a given macroscale domain, a target domain is se-
lected to analyze. This target domain is chosen as the RVE
of the macro domain. To properly represent the microcrack
distribution within the target domain RVE, smaller statis-
tical volume elements (SVEs) are defined, within which the
fracture strength of the rock is processed. The properties
used to describe the SVE are the characteristic length of
the macroscale domain length, LM , the microscale hetero-
geneity average length lm, and the characteristic size of the
SVE, LSV E . The characteristic size of the SVE must be
much smaller than the domain of interest (LSV E � LM ).
Also, the ratio of the SVE size to the average heterogene-
ity length, β=LSV E/lm, should be small enough that the
SVE does not approach the RVE limit. As β approaches
∞, the SVE approaches this limit, and randomness is lost.
This loss of randomness will lead to inaccurate homoge-
neous material properties within the rock domain. To show
this loss of randomness, several SVE sizes will be shown
in the Numerical Results section. While a more succinct
description on the relative size requirements of an SVE are
given by [Du and Ostoja-Starzewski, 2006], the preference
is for the SVE size to be small enough to maintain spa-
tial variability within the RVE realization, while not being
so small that there are many empty SVES without microc-
racks. The SVE must contain enough micro-heterogeneities
to provide a comprehensive representation of the domain.
Figure 1 depicts the macro to micro length scale variables
within a rectangular domain.

For this paper, the SVE is circular, with a diame-
ter LSV E . The target domain is stepped through one by
one, with the step size, S, a function of the SVE size,
S = LSV E/n. The grid line spacing variable, n, is selected
such that the SVEs overlap and provide a complete charac-
terization of the target domain. The center points of these
overlapping SVEs form a uniform grid which are the points
used to calculate the minimum fracture strength of the field.
The outer edges of the RVE form the outer edge of the SVE
center-point grid, as shown in the following figure. The in-
tersection of the cracks with the SVE and the calculation
of fracture strength within the SVE are given in the next

2



section.

Figure 1: Macro- to microscale length scales relevant
to SVE homogenization.

2.3 Fracture Strength Calculations
Once the SVE realizations have been created, the next step
is to calculate the fracture strength that is assigned to the
SVE over the entire range of loading angles. Within the
SVE, both the cracks that are completely enclosed within
the SVE and those that intersect the SVE are considered in
computing an effective strength. If no crack intersects with
the SVE, a maximum fracture strength is assigned based
on a crack of minimum length. Figure 2 shows the inter-
section of cracks based on the SVE. The red lines indicate
cracks that are not considered in calculating the fracture
strength, while the blue lines indicate those that are con-
sidered. The effective length of the crack is considered to
be the square root of the full crack length multiplied by the
length intersecting the SVE.

Figure 2: Cracks considered for strength calculation
(Red Line considered crack segment external to SVE,
Blue Line considered crack segment internal to SVE).

With a given crack of effective length a, the strength
is calculated using Linear Elastic Fracture Mechanics
(LEFM) principles. From this theory, upon the propaga-
tion of the first microcrack the SVE can be considered com-
pletely failed. The second assumption, as shown in [Nguyen
et al., 2011], is that for quasi-brittle RVEs and SVEs with
microcracks the load at which material response starts to
deviate from linear elasticity is very close to the volume ele-
ment’s failure strength. Applying these assumptions to the
model, the point of departure for linear elasticity is when
the stress intensity factor for the most critical crack in the
SVE reaches the fracture toughness. From this, the stress
intensity factor is assumed to be approximated by that of
a crack in an infinite domain. While this ignores crack in-
teractions, this assumption is still believed to represent the
inhomogeneity and anisotropy of macroscopic fracture field.

Therefore, applying the LEFM theory, the critical en-
ergy release rate GC is used to calculate the fracture
strength. The fracture strength is calculated over the entire
range of potential loading angles. Figure 3 shows how the
angle of loading, θ, changes for the calculation of the given
strength. The loading angle at degree 0 is perpendicular to
the crack direction, opening the crack and resulting in the
angle of minimum fracture strength. Loading angles of 90
degrees are parallel to the crack tip, which will result in the
maximum fracture strength for the given angle range.

Figure 3: Angle of loading for crack strength calcula-
tion.)

This model results in a mixed-mode fracture strength
calculation. From the applied traction loading, P, the resul-
tant stress components σyy and σxy shown below are used
to calculate the strength,

σyy = P cos2(θ)
σxy = Plcθ cos θ

For a plane strain problem, this results in the following:

(K2
I +K2

II) (1− ν2)
E

= GC

If the Mode 1 stress intensity factor KI is equal to
σyy
√
πa and Mode II stress intensity factor KII equal to
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σxy
√
πa, where a is equal to the effective length divided by

two, then the fracture strength Sna is equal to

Sna =

√
GCE

(1− ν2)πa
1

| cos θ| (1)

As stated previously, the minimum strength occurs as
θ approaches 0, while the maximum strength under loading
occurs as θ approaches 90 degrees. The maximum strength
automatically assigned to each SVE that does not contain
a crack is equivalent to the strength at angle θ equal to zero
degrees with the absolute minimum crack length a that is
processed. This process is repeated over each crack con-
tained within each SVE, and the minimum strength re-
tained within each SVE. After calculating the minimum
fracture strength for each SVE within the entire RVE do-
main, a field of minimum fracture strengths is created that
represents the effects of the micro-heterogeneities on the
given rock structure. This strength field and more for a
given RVE is discussed in the next section.

2.4 aSDG Method
The asynchronous spacetime discontinuous Galerkin finite
element method, as formulated for elastodynamic prob-
lem in [Abedi et al., 2006b] and extended for h-adaptive
simulations in spacetime [Abedi et al., 2006a], is used to
simulate the fracture of the heterogeneous domain. The
method utilizes discontinuous basis functions across the el-
ement boundaries, and directly discretizes spacetime using
nonuniform grids that satisfy a special causality constraint
[Abedi et al., 2004]. Unique properties, such as a local and
asynchronous solution scheme, arbitrarily high and local
temporal order of accuracy, and linear solution scaling with
number of elements, results in the ability to accurately and
efficiently capture complex fracture patterns using a crack
tracking technique [Omidi et al., 2015]. The resulting solu-
tion is both mesh independent and can accommodate crack
propagation in any direction. Therefore, the aSDG method
is optimal for rock fracture simulations.

3 NUMERICAL RESULTS

The domain used to calculate the statistical fracture
strength is rectangular, centered at xcenter = (0,0) as shown
in Figure 4. This domain, D̄ spans 32 length units in both
~x and ~y directions, respectively, i.e. the domain spans from
x ∈ D̄ = [−16,−16] to [16, 16].

In order to generate the microcrack domain, as stated in
Section 2, a Weibull distribution is assumed for the crack
length and two different angle distributions are used for
this work. The first angle distribution is uniform, between
[0, 2π], and has no angular bias. For the Weibull distribu-
tion, theWeibull shape parameter m = 4, Weibull minimum
value γ = 0.0755885 m, and Weibull scale η = 0.137259 m
are used to define the crack length distribution. For both
the non-biased and biased angular distribution, the choice
of Weibull parameters results in a mean crack length of
0.2 m with a standard deviation is 0.035 m. A minimum

allowable crack length is set to 0.02 m, which thus be-
comes the minimum length for calculating the maximum
strength, noted as the hydrostatic strength of the rock. The
anisotropic crack distribution is biased to produce crack an-
gles uniformly between -25 and -15 degrees, i.e., this corre-
sponds to a uniform distribution with the mean and span
values of −20 and 10 degrees, respectively. Referring to
convention used for defining of the orientation-dependent
tensile strength, cf. Eq. (1), this implies that homogenized
strengths should also be at their weakest at this angle range.
Moreover, the angles ± 90 degrees from the crack angle,
that is 65 to 75 degrees (-115 to -105 degrees), are expected
to have the highest strengths, mainly determined by the
largest strength corresponding to the minimum allowable
crack length. The material properties are: Young’s modu-
lus E = 65 GPa, mass density ρ = 2600 kg/m3, and Pois-
son’s ratio ν = 0.3. The critical energy release rate, GC ,
in Eq. (1) is chosen such that the mean value of fracture
strength is equal to 2 MPa. All the following strength re-
sults are reported in the MPa unit.

Figure 4: Example domain with distributed cracks.

3.1 Angular Unbiased

For the given angular unbiased crack distribution, the ran-
dom fracture strength field was analyzed using several dif-
ferent SVE sizes. The given SVE sizes, denoted LSV E , are
1, 2, 4, and 8 m. The loading angle, θ, was varied from
[0, π]. The fracture strength was calculated for each crack
within each SVE and the minimum fracture strength at
each loading angle was determined within each SVE over
the [0, π] span. The angular spacing selected to calculate
the minimum fracture strength was five degrees. The fol-
lowing figure shows how the random field varied based on
angle for a selected 4x4 SVE.
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(a) 0 Deg Loading Angle (b) 30 Deg Loading Angle

(c) 60 Deg Loading Angle (d) 90 Deg Loading Angle

Figure 5: Random fracture strength fields for four
loading angles in non-biased domain.

The circular contours in Figure 5 are a result of the SVE
shape chosen. For an angular unbiased mesh, the fracture
strength distribution is truly random. At different loading
angles, different SVEs within the RVE are more likely to
fail than the others. Figure 6 shows the angular modulus,
which is defined within each SVE as the fracture strength at
a specific angle divided by the mean of the fracture strength
over all angles. This plot shows how the strength changes at
five different points in the mesh. The coordinates of these
fives points in meters are [−8.− 8],[8, 8],[−8, 8],[8,−8], and
[0, 0]. There is no clear trend for each of the five SVEs
centered at these points.

Figure 6: Fracture strength trend at five points in an-
gular non-biased RVE with changing load angle.

Also, if the domain is truly unbiased by crack angle,
then the fracture strength probability should be roughly
equivalent over the entire loading angle span. From Figure

7, the probability density function follows this trend ex-
actly. Therefore, it is confirmed that the crack angle field
follows the uniform distribution exactly. A kernel smooth-
ing function estimate is used to produce this plot using the
uniaxial fracture strength data.

Figure 7: Probability density functions: LSV E = 4,
load angle comparison for [0, π] span.

Rather than changing the loading angle, Figure 8 shows
how the SVE size changes the random fields using the same
loading angle, θ = 0 degrees. The 1x1 SVE is very noisy,
as it contains many SVEs without any cracks intersecting
at all. Conversely, the 8x8 SVE is approaching a limit of
grid coarseness such that it is approaching a homogeneous
condition that does not properly model the true inhomoge-
neous fracture behavior of the rock.

(a) LSV E = 1 (b) LSV E = 2

(c) LSV E = 4 (d) LSV E = 8

Figure 8: Random fracture strength fields for four
SVE sizes at the same loading angle.

This size effect, caused by an increasing SVE size, can
be seen in the following probability density function plot.
In Figure 9, the probability is shown in the y-axis, while
the strength is in the x-axis. As the SVE size increases,
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the homogeneity of the random fracture strength field in-
creases, as shown by the increasing probability and decrease
of the width of the probability density function (PDF). For
an SVE that is too small, the probability density function
greatly decreases. The increased number of SVEs with no
crack modeled within creates a split peak since these SVEs
are assigned a maximum fracture strength, and the width
of the PDF is large.

Figure 9: Probability density functions: SVE size com-
parison.

3.2 Angular Biased
While the angular unbiased domain shows true random-
ness, the biased crack domain is created such that all crack
angles fall between -25 and -15 degrees. One realistic exam-
ple of a biased cracks occurs in modeling bedding planes in
sedimentary rock. The loading angle θ which would create
the maximum stress field (i.e. the field of minimum frac-
ture strength is perpendicular to the crack, i.e., at angles
-20 ± 90 = 70 and -110 degrees. The figure below shows
the fracture strength for angles spanning from 70 to 160
degrees. The 70 degree load angle maintains an extremely
high strength because the angle of loading is parallel to the
crack. As the angle is increased, the strength steadily de-
creases until reaching a minimum strength at 160 (i.e.,-20)
degrees. Without considering this fracture strength varia-
tion in angle, an inaccurate fracture strength could be as-
signed to the material.

Similar to that shown for the non-biased do-
main, five points with coordinates in meters ([−8. −
8],[8, 8],[−8, 8],[8,−8], and [0, 0]) were analyzed to show how
the strength changes based on the angle. As expected,
the lowest strength is observed for the direction of cracks
around −20 degrees (that is 160 degrees), while the maxi-
mum strength is normal to this direction at around 70 de-
grees. This figure shows that at each point, the same trends
hold due to the biased crack angles. For the biased mesh, it
does not matter where samples are taken from as the same
trend holds. This is due to the high anisotropy of fracture
strength.

(a) 70 Deg Loading Angle (b) 100 Deg Loading Angle

(c) 130 Deg Loading Angle (d) 160 Deg Loading Angle

Figure 10: Random fracture strength fields for four
loading angles in -20 degree biased domain.

Figure 11: Fracture strength trend at five points in
angular biased RVE with changing load angle.

Whereas before there was an equal probability to have
an SVE that fails at a different angle, the PDF in Figure
12 for the sampled biased RVE does not follow this trend.
As one gets closer to the location of lowest strength (160
degrees), the mean value decreases and the PDF shrinks
(lower variations). Also, the PDF for the high strength an-
gle of 60 degrees (close to the maximum expected strengths
at 70 degrees) is low meaning that it has the highest de-
viation from the mean. Clearly, the mean for this angle
of loading is the highest among the angles sampled. The
size effect still holds for both domains as shown in Figure
13; however, the biased domain does not contain the split
peak for the smallest SVE size. This is because the 0 de-
gree loading angle is close to lowest strength angle of -20
degrees, so the entire domain has a near-homogeneous low
strength value.
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Figure 12: Probability density functions: LSV E = 4,
load angle comparison for [0, π] span.

Figure 13: Probability density functions: SVE size
comparison for angular biased domain.

3.3 Dynamic Simulation of Random
Fracture Strength Rock Domains

The asynchronous spacetime discontinuous Galerkin finite
element (aSDG) method was used to solve several dynamic
fracture solutions using the given two differing random
fields. This numerical scheme, implemented in C++, uti-
lizes the aforementioned features in the Formulation sec-
tion as well as advanced adaptive operations in spacetime
to capture complex fracture patterns by a crack tracking
adaptive scheme. The crack path is independent from a
particular discrete mesh lay-out and accommodates crack
propagation in any desired direction, a feature important
for the anisotropic random field shown here.

Figures 14 and 15 show fracture patterns for non-
angular biased and angular-field fracture strength fields un-
der a spatially uniform and temporally increasing stress
field. The description of the initial conditions and bound-

ary conditions that can generate such s stress field (before
the nucleation of the first macroscopic crack) is provided
in [Abedi et al., 2017b]. From the angular-biased solution,
it can be seen that the cracks all propagate in the direc-
tion of angular bias, i.e., the original direction of microc-
racks. The density of nucleated and propagated cracks is
higher for the angular-biased fracture field; cf. Figure 15.
This would have resulted from the direct numerical sim-
ulation of the domains with explicit representation of all
microcracks; since all would have been oriented close to -
20 degrees, they would have extended along this direction
under a spatially uniform and temporally increasing hydro-
static tensile field. The reduced interaction of the cracks,
compared to the case with random orientation of microc-
racks, would have resulted in a higher density of propagated
cracks. As mentioned, our results for the homogenized fields
exhibit the same behavior in these figures.

Figure 14: Dynamic simulation of non-angular biased
random fracture field.

As stated previously, for a given SVE size, the larger
the SVE, the less realistic the fracture response. An SVE
size LSV E of 4 was chosen for this analysis, which pro-
vided enough heterogeneity in the solution. If the rock
domain contains anisotropy, however, the spatial inhomo-
geneity is not enough to properly model the complex crack
field. Without modeling the angular dependence of the
field, weaker planes within the rock are not considered.
Therefore, depending on the angle of loading, different
crack paths are preferred, and complex fracture patterns
are formed. This differs greatly from the biased domain,
wherein only one path is generally preferred. This confirms
the importance of including angular variability when mod-
eling quasi-brittle materials such as rock.
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Figure 15: Dynamic simulation of angular-biased ran-
dom fracture field.

4 CONCLUSIONS

In order to include the effects of weaker planes within a
brittle material such as rock, there is great importance in
including both spatial and angular variability when cal-
culating the random fracture strength field within a do-
main. In this work, two microcrack distributions were de-
veloped to demonstrate the importance of considering the
given angular variability within the structure of the rock
domain. An SVE approach was chosen to model the ran-
dom fracture field. Each intersecting crack located within
the SVE was analyzed, and the minimum overall fracture
strength was assigned to that SVE. This process was re-
peated over a range of loading angles. The center points of
the SVE formed a uniform grid which could then be sent to
a dynamic analysis to simulate rock with its inherent frac-
ture strength inhomogeneity and anisotropy. Selecting the
proper size for the SVE was important, as given an SVE size
too small provided a noisy domain, which can lead to a split
peak in the probability density function of the solution and
the noise can impact the solution of the dynamic fracture
analysis. Meanwhile, an SVE size too large approaches the
RVE limit, leading to an unrealistic homogeneity in the so-
lution, which also provides an unrealistic dynamic fracture
analysis.

The results from both the uniformly distributed domain
and biased microcrack domain fracture analysis showed the
importance of including angular variability. The angular-
biased domain cracks grew only along one primary direc-
tion, corresponding to the in-situ bedding plane direction,
under a hydrostatic tensile stress field. An anisotropic rock
bed has weaker and stronger planes, and fractures should
grow along the path of least fracture strength. The dy-
namic solution of these domains indicates a complex crack

pattern can be expected for a problem like this, which would
be missed without including this angular variability. Other-
wise, the material would inaccurately assumed to be equally
likely to fail in the same direction under any loading con-
dition.

There are a few items to improve upon this work. First,
a Weibull distribution was used to model the crack length
distribution. A Pareto distribution may be more accurate
in modeling the microcrack distribution for a quasi-brittle
material, as shown in [Daphalapurkar et al., 2011]. The
effect of using this distribution or other distributions in-
stead of a Weibull will be investigated in a future paper.
Second, this paper only takes into account uniaxial tensile
strength for these simulations. A future improvement will
take into account shear and compressive strengths as well
for any angle of loading. We studied the effect of random-
ness on fracture pattern for uniaxial compressive testing in
[Abedi et al., 2017a] and our model captured fracture along
±(45◦ ± φ/2) where φ is the friction angle, with respect
to the loading direction. While these results qualitatively
agree with other numerical and experimental observations
[Tang et al., 2000, Teng et al., 2004, Li and Tang, 2015, Dinç
and Scholtès, 2017, Bahmani et al., 2018, Rangari et al.,
2018] we plan to extend our model for such compressive
fracture studies but when fracture strength is no longer
isotropic. This will be of great practical importance as
rock often fractures in compressive or shear modes. Third,
we aim to the obtain the anisotropic covariance function
for the fracture strength field and use in realizing statisti-
cally consistent random fields by the Karhunen-Loève (KL)
method [Karhunen and Selin, 1960, Loéve, 1977]. This in
turn enables treating the rock fracture problem as a stochas-
tic partial differential equation (SPDE) which can be solved
efficiently with methods detailed in [Ghanem and Spanos,
1991].
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