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ABSTRACT
To accurately simulate fracture, it is necessary to account

for small-scale randomness in the properties of a material. Ap-
parent properties of Statistical Volume Elements (SVE), can be
characterized below the scale of a Representative Volume El-
ement (RVE). Apparent properties cannot be defined uniquely
for an SVE, in the manner that unique effective properties can
be defined for an RVE. Both constitutive behavior and material
strength properties in SVE must be statistically characterized.
The geometrical partitioning method can be critically important
in affecting the probability distributions of mesoscale material
property parameters. Here, a Voronoi tessellation based parti-
tioning scheme is applied to generate SVE. Resulting material
property distributions are compared with those from SVE gen-
erated by square partitioning. The proportional limit stress of
the SVE is used to approximate SVE strength. Superposition of
elastic results is used to obtain failure strength distributions from
boundary conditions at variable angles of loading.

INTRODUCTION
When a material is modeled as homogeneous in a frac-

ture simulation, the simulation will not accurately capture the
small scale randomness inherent in crack propagation due to mi-
crostructural heterogeneity. However, direct simulation of ma-
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terial flaws, defects, pores or inclusions may be infeasible due
to computational expense, and/or material characterization may
not be available in sufficient detail. Therefore, probabilistic con-
tinuum models are needed that accurately characterize both ma-
terial properties and variability in material properties at a rela-
tively small scale. Traditional Representative Volume Element
(RVE) approaches in modeling heterogeneous material provide a
continuum approximation, but obscure local material variability.
Statistical Volume Element (SVE) approaches provide a contin-
uum approximation of material properties at a mesoscale. Where
d is the length scale of a typical microstructural feature (e.g. in-
clusion radius), and L is the macroscopic scale of the structure,
the size of the SVE and RVE (lSV E and lRV E respectively) are
ordered as follows:

d < lSV E < lRV E � L (1)

A principle challenge with SVE approaches is the non-
uniqueness of material properties obtained at a scale below the
scale of an RVE. Extensive literature is devoted to the depen-
dency of SVE apparent properties on the boundary conditions
used to obtain the stress strain relationship [1–6]. SVE can be
used to generate statistical characterizations of random fields of
material properties, which can be performed for use in stochastic
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simulation [7–10]. Often, analysis of the accuracy of SVE mate-
rial properties is considered as a function of SVE size. Increas-
ing the size of an SVE increases the accuracy of elastic results.
However, whether a phenomenological model such as Weibull
model [?] is used [?, ?], or strength is directly characterized by
SVEs [?, ?] the material inhomogeneity is lost at larger repre-
sentation/averaging sizes. Moreover, strength properties tend to
decrease as the size of an SVE increases, a phenomenon known
as the size effect. To limit the size effect and maintain fracture
strength inhomogeneities—which are particularly important for
fragmentation studies [?,?]—unlike elastic results, it is thus pre-
ferred to limit the use of large scale SVE (and RVE) for strength
predictions.

SVE partition shape influences the determination of individ-
ual SVE properties, as well as statistics drawn from a popula-
tion of SVE that partition an RVE. Partitioning a microstructure
with inclusions into collections of Voronoi cells has been shown
to provide an advantage over square partitioning [11, 12]. Us-
ing Voronoi cell partitioning, inclusions do not intersect partition
boundaries, avoiding the introduction of spurious stress concen-
trations. Based on this observation, previous work has focused
on comparison of elastic material property statistics obtained by
square and Voronoi partitioning. The current work extends pre-
vious results to focus on comparison of material strength prop-
erties obtained by square and Voronoi partitioning. In particular,
the dependence of material strength on the angular direction of
loading is investigated. The angular dependence of strength is
important to statistically characterize, as it affects directionality
of crack propagation in a fracture analysis.

SQUARE AND VORONOI PARTITIONING OF SVE
A typical square and Voronoi partitioning of an RVE is

shown in Fig. 1. In this illustration, the side length s of the SVE
is ten times the length of the inclusion diameter. In general, a
nondimensional parameter δ is defined to characterize SVE size,
given as:

δ = lSV E/d (2)

with variables as defined in Eq. 1. In this work, the diameter of all
inclusions is a unit value, and the side length of the square RVE
is considered to be lRV E = 100d. To create SVE, the RVE side
length is partitioned by powers of two ( 1

4 ,
1
8 ,

1
16 ,

1
32 ) to generate

SVE with sizes δ = 25,12.5,6.25,3.125, respectively.
Square partitioning is a straightforward method that ensures

each SVE will be of uniform area, although partition boundaries
often intersect inclusions, as shown in the figure. Voronoi par-
titioning is based on an underlying square partition of the RVE.
In a given square region, if the centroid of a Voronoi cell lies
within this region, the cell is assigned to the corresponding SVE.

FIGURE 1. PARTITIONING OF RVE MICROSTRUCTURE (TOP)
INTO SQUARE AND VORONOI SVE (MIDDLE AND BOTTOM
FIGURES, RESPECTIVELY) EACH WITH SIDE LENGTH S.

This leads to SVE with areas that have relatively high variation at
small SVE sizes, and relatively low variation at large SVE sizes.
As shown in the figure, the Voronoi cell partitioning approach
does not allow inclusions to intersect partition boundaries. For
more details on the partitioning method used in this analysis,
see [12, 13].

DETERMINATION OF SVE FAILURE STRENGTH
Material properties determined on an SVE are non-unique,

and depend on applied boundary conditions. In this work, a set
of mixed uniform boundary conditions is applied, with displace-
ment conditions in plane in 2D elements under plane stress. Su-
perposition is used to combine hydrostatic, pure and simple shear
boundary conditions (denoted H,P, and S) such that these results
can be used to span the space of applied strains. This process,
and the method for determining failure strength as a function of

2 Copyright © 2018 by ASME



load angle, are briefly summarized here, and explained in more
detail in [13].

With a known uniform strain condition applied at the bound-
ary of the SVE for each of the three principle loading directions,
the average stress in the SVE is then calculated using FEA. Us-
ing the prescribed strain/average stress relationship for H,P and
S strains, a stiffness matrix is calculated for each SVE.

The maximum stress at the matrix-inclusion boundary, in
the direction normal to the inclusion, is also found for each SVE
under H,P and S applied loading. Results are superposed to gen-
erate results for normal and shear load applied from angles of
zero through 180 degrees. A threshold value σT H is set, such
that when this value is exceeded at the matrix-inclusion inter-
face, the material has reached an elastic limit signifying failure.
Although this is not the ultimate fracture strength, for brittle and
quasi-brittle materials, this threshold value is shown to be a close
approximation for quasi-static [?] and low-rate dynamic load-
ings [?]. The same assumption is used in prior work for microc-
racked domains [?] and random composites [?, 13].

The point at which the maximum matrix-inclusion boundary
stress reaches the threshold value is calculated for two specific
cases at each load angle θ . First, as shown in Fig. 2, the aver-
age normal SVE stress is fixed to have a unit value, with zero
average shear stress. In this case, the strength value s̃n is calcu-
lated, that can be multiplied by the maximum matrix inclusion
interface stress to achieve the threshold value σT H . This value s̃n
is considered the normal strength of the SVE. Similarly, enforc-
ing an average shear stress with unit value and average normal
stress equal to zero yields an approximation of s̃t , the SVE shear
strength.

RESULTS
Results are presented showing convergence of material

properties as a function of partition size for SVE generated us-
ing square and Voronoi partitioning. Results are also presented
showing the dependence of strength properties on angle of load-
ing for square and Voronoi SVE.

Convergence of Material Properties
Figures 3, 4 and 5 show the convergence of material bulk

modulus κ , normal strength S̃n and shear strength S̃t , respec-
tively, as a function of SVE size for square partitioned SVE. Fig-
ures 6, 7 and 8 show the convergence of material bulk modulus,
normal strength and shear strength, respectively, as a function of
SVE size for Voronoi partitioned SVE. In each case, the mean
material property is plotted within an envelope showing range of
the minimum and maximum values recovered for SVE of a given
size.

In all cases, convergence of mean, minimum and maximum
values is observed with increasing window size. This is expected,

FIGURE 2. CALCULATION OF FAILURE STRENGTH s̃n. FAIL-
URE OCCURS WHEN THE MAXIMUM STRESS ON ANY INCLU-
SION BOUNDARY, IN THE DIRECTION NORMAL TO THE IN-
CLUSION, REACHES A THRESHOLD VALUE σT H [13].

as larger window sizes approach the size of an RVE. All results
showing material strength (Figs. 4, 5, 7 and 8) show a trend
of decreasing material strength with increasing SVE size. This is
also expected, as larger SVEs have a higher likelihood of contain-
ing regions with large stress concentration, and therefore lower
strength.

In all cases, convergence is improved by Voronoi partition-
ing. Small window sizes predict mean values closer to those
predicted by large window sizes for the Voronoi partitioning
method. The minimum and maximum material property values
are closer, even at small window sizes, for SVEs partitioned us-
ing the Voronoi method.

Material Property Dependence on Angle of Loading
Results showing the dependence of SVE material proper-

ties on the angle of applied load are considered for square and
Voronoi SVE of relatively large and small sizes (δ = 12.5 and
δ = 3.125). In each case, either the normal strength (s̃n) or
the shear strength (s̃t ) is divided by the threshold value of stress
(σT H ). Note that S̃n shown in Fig. 4 and 7, is the mean value of
the angle-dependent SVE fracture strength s̃n(θ) over angle θ ;
that is S̃n = meanθ∈[0, π]s̃n(θ). Similarly, S̃t = meanθ∈[0, π]s̃t(θ).
The threshold stress is defined above as the maximum stress the
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FIGURE 3. BULK MODULUS κ AS A FUNCTION OF SVE SIZE
FOR SQUARE SVE.

FIGURE 4. NORMAL STRENGTH S̃n AS A FUNCTION OF SVE
SIZE FOR SQUARE SVE.

FIGURE 5. SHEAR STRENGTH S̃t AS A FUNCTION OF SVE
SIZE FOR SQUARE SVE.

matrix may reach at the matrix/inclusion boundary, in the direc-
tion normal to the inclusion, before failure is assumed. These
normalized values are plotted for small and large square SVE
(Figs. 9 through 12), and small and large Voronoi SVE (Figs. 13
through 16).

FIGURE 6. BULK MODULUS κ AS A FUNCTION OF SVE SIZE
FOR VORONOI SVE.

FIGURE 7. NORMAL STRENGTH S̃n AS A FUNCTION OF SVE
SIZE FOR VORONOI SVE.

FIGURE 8. SHEAR STRENGTH S̃t AS A FUNCTION OF SVE
SIZE FOR VORONOI SVE.

Results show that material property anisotropy often corre-
sponds to the angle of loading applied. Relative extrema tend
to occur in both normal and shear strength in all square SVE,
and the larger size Voronoi SVE, when θ = 0◦,45◦,90◦,135◦ and
180◦ (Figs. 9 through 14). Considering the applied loading (see
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FIGURE 9. NORMALIZED NORMAL STRENGTH AS A FUNC-
TION OF LOADING ANGLE θ FOR SQUARE SVE SIZE δ = 12.5

FIGURE 10. NORMALIZED SHEAR STRENGTH AS A FUNC-
TION OF LOADING ANGLE θ FOR SQUARE SVE SIZE δ = 12.5

Fig. 2), where the SVE has square boundaries (or in the case of
the large size Voronoi SVE, relatively square boundaries), these
are angles where loading is aligned with SVE geometry. Only
in the small size Voronoi SVE (Figs. 15 and 16) do the SVEs
display isotropy, or independence between the material strength
properties recovered, and the applied angle of loading. At a small
length scale, the Voronoi SVE are not square, but rather polyg-
onal configurations such as the one pictured in Fig. 2. In these
SVE, the boundaries are nearly randomly aligned with respect to
the angle of loading.

CONCLUSIONS
Results of this work highlight the utility of SVE homoge-

nization methods based on Voronoi cell partitioning. Both elastic
properties and strength properties are shown to converge more
rapidly with increasing SVE size when Voronoi partitioning is
used. This suggests that wide scatter in recovered material prop-
erties at small window sizes may often be due to stress concen-
trations on the boundaries of the SVE when inclusions intersect
these partition boundaries. Eliminating this type of stress con-

FIGURE 11. NORMALIZED NORMAL STRENGTH AS A FUNC-
TION OF LOADING ANGLE θ FOR SQUARE SVE SIZE δ = 3.125

FIGURE 12. NORMALIZED SHEAR STRENGTH AS A FUNC-
TION OF LOADING ANGLE θ FOR SQUARE SVE SIZE δ = 3.125

FIGURE 13. NORMALIZED NORMAL STRENGTH AS A FUNC-
TION OF LOADING ANGLE θ FOR VORONOI SVE SIZE δ = 12.5

centration gives a more accurate representation of the true vari-
ability of recovered properties due to geometric variation in ma-
terial microstructure.

It is also shown that square SVE, or square-like SVE (such
as large clusters of Voronoi cells chosen based on an underly-
ing square boundary), predict greater material anisotropy. This
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FIGURE 14. NORMALIZED SHEAR STRENGTH AS A FUNC-
TION OF LOADING ANGLE θ FOR VORONOI SVE SIZE δ = 12.5

FIGURE 15. NORMALIZED NORMAL STRENGTH AS A FUNC-
TION OF LOADING ANGLE θ FOR VORONOI SVE SIZE δ = 3.125

FIGURE 16. NORMALIZED SHEAR STRENGTH AS A FUNC-
TION OF LOADING ANGLE θ FOR VORONOI SVE SIZE δ = 3.125

anisotropy is not due to actual material anisotropy, but rather to
the alignment of SVE boundaries with the direction of applied
loading on the SVE. This highlights the fact that SVE apparent
properties are non-unique (unlike RVE effective properties), and
depend on the choice of loading. SVE partitions based on col-
lections of Voronoi cells can be used to reduce some of the vari-
ability in recovered properties due to spurious effects, such as

the presence of stress concentrations on the SVE boundary, and
the alignment of SVE geometry with direction of applied load.
Statistics based on these SVEs are more accurate to be used as
the basis to simulate brittle fracture.
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