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ABSTRACT
The microstructural design has an essential effect on the

fracture response of brittle materials. We present a stochas-
tic bulk damage formulation to model dynamic brittle fracture.
This model is compared with a similar interfacial model for ho-
mogeneous and heterogeneous materials. The damage models
are rate-dependent, and the corresponding damage evolution in-
cludes delay effects. The delay effect provides mesh objectiv-
ity with much less computational efforts. A stochastic field is
defined for material cohesion and fracture strength to involve
microstructure effects in the proposed formulations. The sta-
tistical fields are constructed through the Karhunen-Loeve (KL)
method. An advanced asynchronous Spacetime Discontinuous
Galerkin (aSDG) method is used to discretize the final system of
coupled equations. Application of the presented formulation is
shown through dynamic fracture simulation of rock under a uni-
axial compressive load. The final results show that a stochastic
bulk damage model produces more realistic results in compari-
son with a homogenizes model.

1 INTRODUCTION
Brittle materials have a wide range of applications in various

areas–from the geological application, such as rock, to biological
applications, such as bone. The failure response of this kind of
material is susceptible to a sudden rupture by initiation, propaga-
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tion, and fragmentation of many cracks. The main reason of such
a brittle rupture derives from the complex microstructure of these
materials which consist of many microdefects and microcracks.
The most challenging task in the numerical analysis of brittle
materials is the modeling of fracture behavior. In the context of
conventional continuum mechanics, there exist two frameworks
for fracture modeling; Interfacial and Bulk models.

Interfacial models represent explicit sharp fractures in the
computational domain. Three main models in this context are:
the linear elastic fracture mechanics (LEFM) model, cohesive
models [1, 2], and interfacial damage models [3–7]. Interfacial
models explicitly track the real pattern of fractures, but their
implementation is cumbersome and their computational cost is
high. In applications such as multiscale methods, it is hard to
track explicit discontinuities in all scales of interest. If it is even
possible, the computation cost will be extremely high. However,
the most important issue of these models is the need for addi-
tional criteria to predict the initiation and propagation direction
of fractures.

Bulk models apply continuum damage mechanics to approx-
imate the presence of explicit fractures with an implicit damage
variable indicated the level of failure in an equivalent continuum
domain. One of the earliest studies in this area refers to Smeared
Crack approach in [8] where a continuum model is presented to
simulate fractures in concrete. Phase Field approaches are the
enhanced alternatives for bulk models [9–13]. Bulk models rem-
edy the issues above in regard to fracture initiation, additional
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criteria for propagation direction, and challenges in fragmenta-
tion in interfacial models. Also, they provide several benefits
from numerical aspects: Simple integration with other numerical
methods, fast implementation, and straightforward utilization in
multiscale analysis. The main drawback of bulk models is the
overestimation of fracture sharpness which is much better han-
dled by phase field approaches.

The effect of the microstructure is one of the important as-
pects of fracture response in quasi-brittle material. Al-Ostaz and
Jasiuk [14] observed different fracture patterns in different sam-
ples with the same set-ups. The reason for this stochastic behav-
ior is the high sensitivity of quasi-brittle materials to their mi-
crostructure defects. Similar observations are reported in [15],
especially for responses after ultimate load capacity of the ma-
terial when fractures are initiated and propagated. Another con-
sequence of the high sensitivity of responses to microstructure
is the size effect [16, 17]. One of the widely accepted models
for studying the size effect is the Weibull’s weakest link model.
The efficiency of the Weibull method in capturing the size effect
and statistical variation of fracture strength in interfacial mod-
els is shown in [18, 19]. We have used the Weibull model in the
context of an interfacial damage model to capture statistical frac-
ture response of rock, in hydraulic fracturing [20], fracture under
dynamic compressive loading [21], and in fragmentation stud-
ies [7, 22]. However, these models are computationally expen-
sive due to the use of a sharp interfacial model. In this study, we
first use a random field approach, rather than the Weibull model,
to represent material randomness. Second, in addition to a sharp
damage model, we formulate a bulk damage model, where ma-
terial cohesion is treated as a random field.

We will incorporate microstructural randomness in dynamic
failure of brittle material through a stochastic approach. In the
proposed stochastic approach, model parameters are constructed
based on statistical fields. In the current study, we generate a re-
alization of the statistical field for the fracture strength and ma-
terial cohesion based on the well-known Karhunen-Loève (KL)
method [23, 24]. In this regard, a recent study in [25] demon-
strates the motivation of statistical models in high rates of load-
ing in that the entire spatial domain fails in a short time period
for problems that lack macroscopic stress concentration points.

The statistical damage formulation is coupled with elas-
todynamic equations for both the bulk and interfacial models.
To solve these nonlinear systems of hyperbolic equations, we
employ the asynchronous Spacetime Discontinuous Galerkin
(aSDG) method; this method uses the Tent-Pitcher algorithm
[26] to advance the solution by solving one patch (a small col-
lection of elements) at a time until the computational spacetime
domain is completely solved. This method results in a highly
advanced numerical method with local and linear solution prop-
erties for the elastodynamic problem [27].

In the following sections, we will describe the proposed
damage models, interfacial and bulk, and KL method in §2. We

will show the effect of randomness and accuracy of the stochastic
bulk model in §3 for a compressive sample to indicate the essen-
tial role of randomness in dynamics fracture analysis. Finally,
we will discuss the novel contributions of this study in §4.

2 FORMULATION
In this section, we describe two different approaches for the

modeling of brittle material failure. These approaches have the
same origin from mathematical and physical aspects, but one rep-
resents the material failure as a localized/sharp phenomenon, and
the other considers the failure mechanism as a bulk process in the
material. After the description of the models, we will discuss a
general method based on the KL method to involve stochastic
effects into the introduced damage models.

Interfacial Model
The interfacial damage parameter D interpolated between

the fully bonded (D = 0) to fully-debonded (D = 1) state on a
contact/fracture interface. The macroscopic traction vector, s∗, is
given by,

s∗ = (1−D)s̆B +Ds̆D (1)

where s̆B and s̆D are dynamic Riemann solutions for bonded
and debonded (separation, contact–stick, or contact–slip) modes.
The formulas for these four states of Riemann solution are pro-
vided in [28]. The damage value is obtained by the evolution law,

τcḊ = Dsrc, (2a)

Dsrc = 1− e−a〈Dfrc−D〉+ , (2b)

Dfrc = g(s̆, δ̆ ), (2c)

where Ḋ is the time derivative of D, τc is the time-scale or de-
lay parameter, a is the brittleness factor, and 〈.〉 is the Macaulay
positive operator. Similar to [29] we assume the damage evolu-
tion be driven by an effective stress s̆ and an effective separation
δ̆ . In earlier works, e.g., [7], damage is only driven by the ef-
fective traction, but as described in [29] the inclusion of δ̆ is not
only physically motivated but also improves the response of the
model. Their definitions are motivated by the definition of effec-
tive scalar values in [30] and are given by,

s̆ :=
√
〈s̆1

B〉2 +β 2
s (s̆2

B)
2 (3a)

δ̆ :=
√
〈δ1〉2 +β 2

δ
δ 2

2 (3b)
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where βs and βδ are traction and displacement mode-mixity co-
efficients, and (s̆1

B, s̆
2
B) and (δ1,δ2) are the normal and tangential

components of bonded Riemann traction s̆B and displacement
jump (separation) vectors in 2D, respectively. The form of the
function g(s̆, δ̆ ) in Eqn. (2c) and the mode-mixity values for
a Mohr-Coulomb model are provided in [29] and [21], respec-
tively. The reader is also referred to [7] for a general discussion
on this class of interfacial damage models and their comparison
with conventional cohesive models.

Bulk Model
We use the same damage evolution law for the bulk model to

provide a better comparison between the two models. The bulk
model used in the current study is a nonlinear ordinary differen-
tial equation as,

τcκ̇ = κsrc, (4a)

κsrc = 1− e−a〈κfrc−κ〉
+, (4b)

κfrc =
σr +σave sinφ

ccosφ
, (4c)

where κ̇ is the time derivative of the damage variable κ , 0 ≤
κ ≤ 1, c is the material cohesion, and φ is the friction angle. σave
and σr are the center and radius of the Mohr circle in the stress
space, respectively. We define the damage force function, i.e.,
κfrc, based on the Mohr-Coulomb failure envelope. This def-
inition is appropriate for brittle material with dominant failure
modes in shear and tensile modes.

The proposed dynamics damage formulation, which is based
on the Allix’s formulation in [3, 31, 32], introduces a delay be-
havior into the damage mechanism through the time-scale pa-
rameter. The differences of our model and the Allix’s formu-
lation, particularly in relation to the definition of damage force
Eqn. (4c) based on the Mohr-Coulomb failure criterion are fur-
ther discussed in [33]. The delay effect of our model accounts for
the non-instantaneous damage mechanism which is more consis-
tent with the physical behavior of damage response in dynamic
conditions. Also, the timescale τc preserves the mesh-objectivity
of the aforementioned damage formulation by providing a non-
local behavior in spacetime domain. This (temporal) non-local
behavior and existence of an intrinsic length scale is required
for bulk damage models [34] and is comparable with the spatial
non-local characteristics in conventional gradient-based [35–37]
and integration-based non-local [38] theories where they use a
length-scale parameter. However, the delay method is preferable
to those spatially non-local schemes due to its much less compu-
tational and implementation efforts.

We propose a damage-deformation relation by considering
the effect of damage on deviatoric and hydrostatic tensile com-

ponents of the elastic stress tensor as,

σσσ eff = (1−κ)(σσσd + 〈σσσh〉)+(σσσh−〈σσσh〉), (5)

where σσσd and σσσh are deviatoric and hydrostatic parts of elastic
stress tensor σσσ .

Stochastic Field Realization
The uncertainty of a material property ξ is incorporated in

the proposed damage models, bulk and interfacial, by treating a
fracture strength parameter ξ as a spatially inhomogeneous ran-
dom field ξ (x,ω) governed by probability structure ω . The ran-
dom field is developed by the imposition of a desired stationary
covariance of γ-exponential form with a prescribed correlation
length which controls the spatial variability of the field. A log-
normal Lognormal(µ,σ2) probability structure governs the dis-
tribution of the random field. This probability space has the mean
exp
(

µ +σ2/2
)

and variance [exp(σ2)−1]exp(2µ +σ2) of the
log-normal field.

There exist several methods that allow a scalar random field
approximation to be generated wherein the inherent statistics are
preserved. One such method is the KL method which approxi-
mates the random field ξ by an expansion of its covariance kernel
as the following series,

ξ (x,ω) = µξ (x)+
n

∑
i=1

√
λibi(x)Yi(ω), (6)

where the eigenvalues λi and eigenfunctions bi(x) are extracted
as solutions of the Fredholm equation, i.e., the generalized eigen-
value problem (EVP), which is detailed in [39]. The truncated
series with an appropriately chosen n number of terms can pre-
cisely represent the statics of the underlying random field, due
to the monotonically decreasing property of the eigenvalue so-
lutions. The series converges to the exact underlying statistics
when n→ ∞, but the computation cost will be another factor to
consciously choose the number of terms.

The uncorrelated random variables Yi must also be indepen-
dent for practical use of the KL method. This is valid only if the
random variables and consequently the random field ξ (x,ω) are
Gaussian. This Gaussian requirement does not restrict the KL
method robustness, since the inverse transform method provides
a means of transforming one probability structure to another; this
transformation needs a prior known cumulative density func-
tion of both distributions. Therefore, the KL Gaussian random
field approximation is mapped to an approximation of the orig-
inally assumed log-normal distribution. Please refer to [40] for
an overview of the use of KL method in modeling rock fracture
strength and [22] for further elaboration on the KL and eigen-pair
solution procedures, particularly for non-Gaussian fields.
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3 NUMERICAL RESULTS
We investigate several aspects of the proposed models in

fracture modeling of a brittle rock sample. Uniaxial compres-
sion tests in homogeneous and inhomogeneous conditions are
studied. Figure 1 shows the geometry and boundary conditions
of the studied problem. This plain strain specimen has the width
and length of w = 0.08 m and l = 2w = 0.16 m, respectively.

Material properties are The rock material properties, listed
in Tab. 1, are based on rock property groups discussed in [41].
The peak load and ramp time are fixed for all the following sim-
ulations which are Ppeak = 13.5 MPa and tramp = 0.01 ms, respec-
tively.

The computational domain in spacetime is discretized by
simplicial tetrahedral elements, and the corresponding field un-
knowns, damage and displacement, are approximated by third-
order basis functions in spacetime. We define a convergence
criterion based on the energy norm of the coupled system, and
the tolerance is 10−8.

Density ρ 2650 kg/m3

Elastic modulus E 65 GPa
Poisson ratio ν 0.23
Cohesion c 4.7 MPa
Friction angle φ 17◦

Time-scale parameter τc 0.03
Brittleness factor a 10

TABLE 1: MATERIAL PROPERTIES
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FIGURE 1: UNIAXIAL COMPRESSION TEST AND THE
LOAD HISTORY.

(a) t = 9.5 µs (b) t = 15.0 µs

(c) t = 20.5 µs (d) t = 26.0 µs

FIGURE 2: CRACK DISTRIBUTIONS AT VARIOUS TIMES
IN THE INTERFACIAL MODEL WITH HOMOGENOUS
PROPERTIES. THE COLOR FIELD SHOWS THE STRAIN
ENERGY DENSITY ON THE DEFORMED GEOMETRY.

Homogeneous Material Property
In this section, we study failure mechanisms of the proposed

bulk and interfacial models under the same boundary conditions
and almost the same model parameters as listed in Tab. 1. Fig-
ures 2 and 3 show failure patterns for the interfacial and bulk
models at different times, respectively. Although the responses
are not well matched, the models have some similarities in some
aspects. First, the initial damage zones are generated at speci-
men corners. Second, the fractures or damage zones propagate
directionally toward the specimen center. However, there is a
significant difference in the estimation of failure zones.

For both models the stress field is relatively uniform along
the width of the domain as the wave propagates inward. The
strength values are also uniform, due to using a homogeneous
material mode. However, as seen in Fig. 2 for the interfacial
model the fractures are localized rather than populating the en-
tire width of the domain. This is explained by the interfacial
nature of this model and small discretization errors; although the
stress and strength fields are rather uniform, even small numer-
ical errors cause certain points to be sites of crack nucleation.
Subsequently, the stress field around these nucleation sites be-
comes highly nonuniform due to the stress concentration and
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(a) t = 20.5 µs (b) t = 26.0 µs

(c) t = 31.5 µs (d) t = 37.0 µs

FIGURE 3: CONTOURS OF THE DAMAGE EVOLUTION
AT DIFFERENT TIMES IN THE NON-ADAPTIVE BULK
MODEL WITH HOMOGENEOUS PROPERTIES. THE DE-
FORMED MESHES ARE DEPICTED BY MAGNIFICATION
FACTOR OF 250. COLORS FROM BLUE TO RED COR-
RESPOND TO BULK DAMAGE VALUES FROM ZERO TO
ONE, RESPECTIVELY.

shielded regions surrounding a propagating crack. The cracks
are mostly along the angle 45◦ − φ/2 ≈ 36.6◦ with respect to
the load orientation, which matches the predicted angle from the
Mohr-Coulomb model [21]. On the other hand, for the bulk dam-
age model fracture is rather uniform along the width of the do-
main, which does not match the localized failure zones observed
experimentally.

This investigation has two outcomes: First, it shows the
functionality of the adaptive method in the solution accuracy for
tracking crack patterns in the interfacial model; second, it pro-
vides evidence of mesh insensitivity of the damage formulation
which is a crucial problem in damage mechanics. Figure 4 de-
picts the application of the h-adaptive method in the bulk model.
It is obvious there is not any improvement in the approximated
failure zones, and the result is in an excellent agreement the re-
sult in Fig. 3 where the underlying mesh is a nonadaptive 32×64
structured grid of triangles. That is, the rather nonphysical dis-
tributed response of the bulk model is intrinsic; from its formu-
lation and unlike the interfacial model, discretization errors and
adaptive operations cannot induce localized failure zones.

(a) t = 20.5 µs (b) t = 26.0 µs

(c) t = 31.5 µs (d) t = 37.0 µs

FIGURE 4: CONTOURS OF THE DAMAGE EVOLUTION
AT DIFFERENT TIMES IN THE ADAPTIVE BULK MODEL
WITH HOMOGENEOUS PROPERTIES. THE DEFORMED
MESHES ARE DEPICTED BY MAGNIFICATION FACTOR
OF 250. COLORS FROM BLUE TO RED CORRESPOND TO
BULK DAMAGE VALUES FROM ZERO TO ONE, RESPEC-
TIVELY.

Inhomogeneous Material Property
In this section, we show how the consideration of the mate-

rial randomness results in more realistic responses of the bulk
model. We consider random effects of the cohesion value in
the bulk model and the tensile strength in the interfacial model.
These material properties can significantly affect the failure re-
sponse of the material as they control the initiation of the degra-
dation process.

Figure 5 presents the KL realization of a random field with
the correlation length of 5 mm, unitary mean value, and 25%
variance for the standard normal form of the fracture strength
field. This random distribution is used for the cohesion and frac-
ture strength in the domain with the reported mean values in Tab.
1, i.e., 4.7 MPa and 7 MPa, respectively. Other parameters are
assumed homogeneous with the same previous values, and the
boundary conditions are kept the same as before.

Figures 6 and 7 show the damage response and fracture
propagation at different times for the interfacial and bulk models,
respectively. The response of the bulk model indicates that weak-
est zones in the material have a dominant effect on the evolution
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FIGURE 5: A KL REALIZATION WITH UNITARY MEAN
AND 25% VARIANCE. THE CORRELATION LENGTH FOR
THE RANDOM FIELD IS 5 mm.

of damage. This is concluded by the comparison of the initial
damaged zones in Fig. 7a with weakest zones of the sample in
Fig. 5. The randomness effect does not have any considerable
contribution in the response of the interfacial model. This is due
to two sources: First, interfacial models are localized, and so
immediately they produce many stress concentration sites in the
domain resulting in a localized response even for the homoge-
neous material strength case shown in Fig. 2; second, the com-
pressive loading in the example is too high. Therefore the ma-
terial does not have enough time to transfer the applied stresses
to other places, and many cracks are generated immediately after
the imposition of boundary loads. This statement is justifiable
by the consideration of an infinite load. In such an extreme case
the distribution of material property does not have any effect on
the failure response, and the failure always occurs in the same
regions. The other factor that may affect the interaction of ran-
domness and the load amplitude is the confinement pressure in
bi-axial compression tests which is not studied in this paper. Be-
sides, as the employed damage model is rate-dependent, another
crucial topic for further investigations is the interaction of length
scales implied by the rate-dependent model and the random field
for fracture strength. We leave these questions for future works.

The heterogeneity structure of the material cohesion signifi-
cantly changes the bulk model response to a more realistic behav-
ior. In Fig. 7, the damage initiates from the weakest points in the
material instead of initiation from corners in Fig. 3. The most in-
teresting outcome is the appropriate recovery of the failure zones
in the bulk model results. These failure zones are more aligned
with the top and bottom boundary edges which are in a good
agreement with the interfacial model in Fig. 6d; instead of cor-
ners in Fig. 3d. Also, we see more localized behaviors in special
directions after the generation of the initial damage spots which
considerably modify the globally diffusive behavior in the pre-

(a) t = 9.5 µs (b) t = 15.0 µs

(c) t = 20.5 µs (d) t = 26.0 µs

FIGURE 6: CRACK DISTRIBUTIONS AT VARIOUS TIMES
IN THE INTERFACIAL MODEL WITH HETEROGENEOUS
FRACTURE STRENGTH. THE COLOR FIELD SHOWS THE
STRAIN ENERGY DENSITY ON THE DEFORMED GEOM-
ETRY.

vious homogeneous example. In compressible tests, these spe-
cific inclined failure zones are expected by the Mohr-Coulomb
model, and the provided result is comparable with other numeri-
cal and experimental observations [42–46]. This example shows
how the randomness improves the reality of the solutions and
reduces computational cost with the simpler bulk model.

4 CONCLUSION
In the current study, we formulated a dynamic stochastic

damage model for brittle failure. The introduced time-scale pa-
rameter in the damage model incorporates rate effects into this
model and preserves the mesh objectivity. A statistical frame-
work is formulated based on the KL expansion method to quan-
tify material randomness in the stochastic bulk and interfacial
models. We formulated an advanced numerical technology based
on the aSDG method to solve the highly nonlinear coupled sys-
tem of hyperbolic equations. The main advantage of this nu-
merical method is to precisely track wave fronts in highly dy-
namic impact problems. The final system of nonlinear equations
is solved with the Newton-Raphson method.

6 Copyright c© 2018 by ASME



(a) t = 10.25 µs (b) t = 20.5 µs

(c) t = 26.0 µs (d) t = 37.0 µs

FIGURE 7: CONTOURS OF THE DAMAGE EVOLUTION
AT DIFFERENT TIMES IN THE BULK MODEL WITH HET-
EROGENEOUS COHESION. THE DEFORMED MESHES
ARE DEPICTED BY MAGNIFICATION FACTOR OF 250.
COLORS FROM BLUE TO RED CORRESPOND TO BULK
DAMAGE VALUES FROM ZERO TO ONE, RESPECTIVELY.

We showed the most critical factor to get more realistic re-
sponses from bulk models is the consideration of randomness
effects. Although for this high amplitude loading problem the
response of the interfacial model did not change considerably
with random fracture strength, the response of the bulk model
was significantly affected by a random cohesion field. There-
fore, a homogeneous fracture strength field is not an appropri-
ate alternative for bulk models for certain problems. The mesh
objectivity of the proposed damage formulation is proven by a
comparison between a fixed-mesh and h-adaptive refined mesh
results.

In this work, we assumed an artificial statistics for corre-
sponding random variables in the statistical analysis. In future
works, we aim to use statistical volume elements (SVEs) to ho-
mogenize random properties of brittle material at different length
scales. We will characterize fracture related parameters as ran-
dom variables with load angle dependence similar to [47].
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