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ABSTRACT
As a quasi-brittle material, the fracture response of rock

is very sensitive to its microstructural defects. Herein, we use
statistical volume elements (SVEs) to characterize rock fracture
strength at the mesoscale, based on the distribution of microc-
racks at the microscale. The use of SVEs ensures that the mate-
rial randomness is maintained upon “averaging” of microscale
features. Certain fracture strengths, such as uniaxial tensile
strength, uniaxial hydrostatic strength, shear strength, and uni-
axial compressive strength, are obtained and characterized for
different angles of loading. Thus, a material with anisotropic
fracture strength can be characterized. Statistics of the charac-
terized strengths are analyzed, as well as their auto- and cross-
correlation functions of these random fields to shed light on the
length scales, relative to the volume element size, at which ho-
mogenized properties vary. While crack interaction is not in-
cluded, the analysis provides insight on the distribution and cor-
relation of different strengths. Finally, the asynchronous space-
time discontinuous Galerkin method is used for macroscopic
fracture analyses of two rock domains homogenized by SVEs.

INTRODUCTION
The response of quasi-brittle materials under loading is de-

termined by the microscale distribution of cracks and other de-
fects. Due to the lack of energy dissipative mechanisms within

∗Address all correspondence to this author.

these materials, microcrack stress concentrations are not bal-
anced as in ductile materials [1, 2]. Crack pattern variability un-
der the same loading [3], ultimate strength uncertainties [4, 5],
and other material heterogeneities are a consequence of the sen-
sitivity of quasi-brittle materials to these microstructural flaws.
The size effect, wherein the fracture strength decreases as the
size of the specimen increases, is a direct result of these flaws.
Thus, networks of microcracks can lead to very different fracture
patterns even under the same loading and geometry settings [3]
for different material samples.

Consequently, modeling these materials requires a consider-
ation of these heterogeneities and anisotropy. When performing
a fracture analysis, the heterogeneities can be implemented us-
ing either implicit or explicit methods. Explicit methods directly
introduce these heterogeneities into the solution scheme. One
well-known explicit method is lattice modeling [6], where a lat-
tice of elements is used to represent a particle network connected
by springs. One major drawback to these implicit methods are
the small space and time-scales required to directly resolve the
defects in the solution. To resolve this issue, an implicit method
may be used which does not directly include microstructural de-
tails in the analysis, and instead incorporates their overall effect
without requiring the short scales necessary for explicit methods.

Weibull’s weakest link method [7,8] is an example of an im-
plicit method which has proven very effective in capturing the
size effect and stochastic variations in fracture response. The au-
thors have employed the Weibull model for multiple purposes,
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including capturing statistical fracture response of rock in hy-
draulic fracturing [9], fracture under dynamic compressive load-
ing [10], and in fragmentation studies [11]. The Weibull model
provides only a phenomenological characterization of fracture
strength, however, and lacks the direct connection to the material
microstructure.

Therefore, a homogenization approach is desired which re-
solves this issue with the Weibull method. Homogenization ap-
proaches derive the macroscopic properties of the material by
solving the problem in a Volume Element (VE). Similar ap-
proaches can be used to calibrate certain fracture models, for
example, [12–15]. A Representative Volume Element (RVE) is a
class of VEs which is a subset of the overall domain, but still ap-
preciably larger than the microscale features. Because the RVE
is so much larger than the microscale, the RVE approaches the
homogeneous macro response of the domain, while containing a
large number of heterogeneities. Because of the RVE’s size, the
RVE loses the spatial inhomogeneity and sample to sample vari-
ation expected for microscale features. In order to capture these
inhomogeneities, another class of VE known as a Statistical Vol-
ume Element (SVE) is used. The SVE, which is small enough to
capture the aforementioned microscale features, have been used
to capture both elastic [16–18] and fracture responses [19]. The
authors are referred to [20, 21] for a more detailed comparison
of RVEs and SVEs. Moreover, the SVE has been formulated for
fracture in quasi-brittle materials by the authors in [22], show-
ing the importance of incorporating inhomogeneity in fracture
strength.

For rock, due to the existence of bedding plane, model-
ing anisotropy in fracture and elastic properties is as important
as modeling inhomogeneities. Once the anisotropy of fracture
strength is characterized, there are two main approaches to in-
corporate them in a macroscopic continuum model: [23,24] used
a second order microstructure tensor, in additional to commonly
used invariants of stress tensor, to define a general failure crite-
rion. In contrast to the the aforementioned bulk failure model,
well-known interfacial models such as Mohr-Coulomb or Hoek-
Brown [25] are made angle-dependent in [26–28] by assigning
different tensile strengths, friction coefficient, etc. for different
angles of loading.

In this work, we adopt the latter approach, in that for
any potential angle of loading we characterize different frac-
ture strength parameters. This work build on our previous work
in [22, 29] where SVEs containing microcracks are analyzed to
derive fracture properties. However, unlike previous work were
tensile strength was modeled as an angle-independent field, we
derive uniaxial tensile strength of SVEs for arbitrary loading an-
gles. Second, to have a more realistic characterization of frac-
ture response on a fracture plane, other fracture strengths such as
compressive and shear strengths are also determined for a given
direction. Third, fracture under compressive stress state due to
strong frictional sliding is modeled herein.

Angular dependent fracture strengths are developed in the
next section, and the statistics of these strengths analyzed in the
Numerical Results section for both an isotropic and angularly
biased anisotropic domain. Covariance functions are used to de-
termine how the calculated fracture strengths change in relation
to itself and each other when traversing through the space-angle
domain. Afterwards, an asynchronous spacetime Galerkin finite
element method is used to analyze the fracture response of these
domains with the applied random fracture strength fields.

FORMULATION

This section defines the statistical volume element approach
for defining fracture strength in a quasi-brittle domain with re-
spect to varying loading angle. Subsection one details how to
characterize a domain with distributed microcracks using RVEs
and SVEs. The next subsection then describes the process to
calculate the angular-dependent fracture strength field. Next, a
description of the covariance function and its use to determine
the correlation of the fracture strength random fields is shown.
Finally, the asynchronous Spacetime Discontinuous Galerkin
(aSDG) method is detailed for performing dynamic fracture sim-
ulations within the given quasi-brittle domains.

RVE and SVE Definition

As mentioned in the Introduction, a representative volume
element (RVE) of a given domain is large enough to represent the
multitude of micro-heterogeneities within the domain, while still
being sufficiently smaller than the overall structure. When the
size of the volume element is reduced, the RVE approaches the
statistical volume element (SVE) regime. The characteristic size
of the SVE LSV E is smaller than the overall size of the domain of
interest LM , (LSV E � LM), and the ratio of the SVE size to the
size of the average microcrack length must be small enough that
the SVE does not approach the RVE limit, β=LSV E /lm. Random-
ness is lost as the ratio β approaches infinity. This size effect is
investigated further in the Numerical Results section.

For this paper, a 32x32 meter domain representing an RVE
sample of a larger domain is selected. The domain is sampled
with a uniform grid consisting of the center points of the respec-
tive SVEs. The grid spacing, S = LSV E/n, is a function of the
SVE size, LSV E , and a grid line spacing variable, n, that is cho-
sen such that the SVEs overlap by some amount such that the
entire domain is sampled with sufficient resolution regardless of
SVE size or shape. For every SVE sampled, the given micro-
cracks which intersect with the SVE are analyzed and used to
determine the angularly dependent fracture strength field, as de-
scribed in the following section.
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FIGURE 1. CRACKS WITHIN SVE FOR FRACTURE
STRENGTH CALCULATION

Fracture Strength Calculations
Within the statistical volume element, all possible intersect-

ing microcracks are considered. For this work, a circular SVE
shape was chosen. Cracks both completely encircled by the SVE
domain or only partially intersecting are considered. If no crack
intersects the SVE, a maximum fracture strength is assigned to
the SVE based on a crack of minimum length. For Figure 1, all
cracks within the circle which are analyzed are blue, while those
outside the SVE which are ignored are red.

For a crack of effective length a, the strength is calculated
from Linear Elastic Fracture Mechanics (LEFM) principles. The
first assumption utilizing this approach is that upon the propaga-
tion of the first microcrack, the SVE is considered to be com-
pletely failed. Next, linear elasticity may be assumed for quasi-
brittle fracture within RVEs and SVEs because the load at which
the material response begins to deviate from this linear behavior
is close to the volume elements failure strength [30]. Therefore,
utilizing the LEFM approach, the point of departure for linear
elasticity is when the stress intensity factor for the most critical
crack within the SVE reaches the fracture toughness. To approx-
imate the stress intensity factor, a crack in an infinite domain is
used. One major drawback of this assumption is that crack inter-
actions are ignored; however, the assumption is believed to still
represent the overall anisotropy of the macroscopic fracture field.

The critical energy release rate GC is used to calculate the
fracture strength. The angle of loading is varied, and the fracture
strength is calculated at periodic intervals. Figure 2 is depicts
how the angle of loading, θ , changes for the calculation of the
given strength. The loading angle at degree zero is perpendicu-
lar to the crack direction, opening the crack and resulting in the
angle of minimum fracture strength. Loading angles of 90 de-

FIGURE 2. CRACK IN INFINITE DOMAIN WITH VARYING
LOAD ANGLE

grees are parallel to the crack tip, which results in the maximum
fracture strength for the given loading angle range.

Utilizing a mixed mode fracture strength calculation, the
traction loading P is applied, resulting in the stress components
σy′y′ , σx′x′ and σx′y′ . Solving the mixed mode fracture equations
yields the following equations for tensile (SN), shear (SS), com-
pressive (SC), and hydrostatic tensile (SHN) strengths:
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where k and φ = tan−1(k) are friction and friction angle, respec-
tively, and a is the half-crack length. The stiffness parameter E ′ is
equal to E/(1−ν2) and E for plane strain and plain stress condi-
tions, respectively. The friction coefficient appears in equations
as under compressive stress state (σy′y′ < 0), mode one stress in-
tensity factor, KI , is zero, and mode two fracture can occur only
if Coulomb slip condition holds on crack surfaces.

The maximum strength assigned to each SVE is equivalent
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to the strength at angle θ equal to zero with the minimum allow-
able crack length a that is processed. When looping over each
crack within the SVE domain, the minimum calculated strength
is retained for each of the three angular dependent strength fields
(plus the angular independent hydrostatic strength) and asso-
ciated to that specific SVE. These fields of minimum fracture
strengths are then created which represents the anisotropy and
inhomogeneity of the structure.

Covariance and Correlation Functions
The covariance of a random field is a description of how

the variable changes within the field. For the given anisotropic
problem, there are multiple parameters to consider. The frac-
ture strength field changes spatially, angularly, and between each
specified strength. The covariance can be calculated between two
variables X and Y utilizing equation 2, where µ is the variable
mean.

cov(X ,Y ) = E(X−µX )E(Y −µY ) (2)

After the covariance function is calculated, the correlation of
the two variables can then be calculated. The Pearson correlation
coefficient, referred to as Pearson’s r, is used to calculate how
correlated the two variables are. If r is equal to +1, then the two
variables are completely positively linearly correlated, while if
equal to −1 the variables are completely negatively linearly cor-
related. An r value equal to 0 means that the two variables are not
linearly correlated at all. The correlation function is calculated
using equation 3 utilizing the covariance function and the stan-
dard deviations of the two variables, denoted by σ . These two
covariance and correlation functions are then used to determine
how the random field is related. This can then be used to develop
statistically consistent random fields using the Karhunen-Loeve
(KL) method. Statistically consistent random fields are crucial to
developing the efficient stochastic partial differential equations,
which can be solved using methods detailed in [31].

corr(X ,Y ) =
cov(X ,Y )

σxσy
(3)

NUMERICAL RESULTS
The numerical results will be presented in order of the

two different microcrack distributions, one isotropic and one
anisotropic, developed for this work. For each microcrack dis-
tribution, the domain D̄ is centered at xcenter = (0,0) and spans
32 meters in both~x and~y directions, i.e., the domain spans from
x ∈ D̄ = [−16,−16] to [16,16]. Each domain microcrack distri-
bution was created using a Weibull distribution for crack length

with Weibull shape parameter m = 4, Weibull minimum value
γ = 0.0755885 m, and Weibull scale η = 0.137259 m. The
isotropic domain has a uniform crack distribution between [0,π]
and has no angular bias.

The anisotropic crack distribution is biased between -25 and
-15 degrees, i.e., the domain has a mean angle of -20 degrees with
a 10 degree span. This corresponds to a field with an orientation-
dependent fracture strength that should be weakest at -20 degrees
and strongest ± 90 degrees from the angle corresponding to min
value, i.e., at angles 70◦ and −110◦. Material properties used
for this analysis are Young’s modulus E = 65 GPa, mass density
ρ = 2600 kg/m3, and Poisson’s ratio ν = 0.3. For both isotropic
and anisotropic crack distributions, the mean crack length in the
domain is 0.2 m with a standard deviation of 0.035 m. The min-
imum allowable crack length used to determine the maximum
fracture strength is 0.02 m.

Isotropic Domain
As detailed above, the isotropic domain contains a uniform

crack distribution between [0,2π]. Therefore, the domain is an-
gularly unbiased. The process detailed in the formulation section
was used to calculate the random fracture strength field for SVE
sizes of 1, 2, 4, and 8 m SVE lengths. The loading angle θ

was varied from [0,π] with a spacing of five degrees within this
range. Applying LEFM principles, the minimum uniaxial, ten-
sile, shear, and compressive fracture strengths are calculated for
every crack which intersected or were contained in an SVE.

From Figure 3, the impact of size effect can be seen. As the
SVE size decreases, the isotropic random field fracture strength
decreases and greater homogeneity is seen. The minimum uni-
axial strength is taken over all loading angles around an SVE.
This figure demonstrates that as the SVE size increases, i.e., as it
approaches the RVE size limit, the rock response becomes more
homogeneous, represented by weaker minimum strengths.

Another interesting study is analyzing the rock anisotropy,
where for a given point and SVE size the variation of fracture
strength is measured for different loading angles. The anisotropy
measure is defined as the standard deviation in loading angle for
each SVE divided by the mean value. This is then calculated
for each fracture strength field. This anisotropy measure is thus
higher whenever the standard deviation of the fracture strength
in angle is greater relative to the mean value.

Figure 4 shows the spatial distribution of anisotropic mea-
sure for SN for different SVE sizes. Note that the color bars are
not normalized. Therefore, it can be shown that the smaller the
SVE size, the higher the level of anisotropy even for a isotropic
domain. For a 1x1 SVE, the maximum measure of anisotropy
is greater than one, while for SVEs of size 8x8, the maximum
measure of anisotropy is only about 0.1. This again shows that
as the SVE size increases, the variations in fracture strength, in
space in Figure 3 and angle in Figure 4, decrease considerably.
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(a) (b)

(c) (d)

FIGURE 3. MINIMUM UNIAXIAL STRENGTH SN FOR SVE
SIZES LSV E = (a) 1X1, (b) 2X2, (c) 4X4, AND (d) 8X8

(a) (b)

(c) (d)

FIGURE 4. UNIAXIAL STRENGTH SN ANISOTROPY MEA-
SURE FOR LSV E = (a) 1X1, (b) 2X2, (c) 4X4, AND (d) 8X8

(a) (b)

(c) (d)

FIGURE 5. ANISOTROPIC DOMAIN UNIAXIAL FRACTURE
STRENGTH SN FOR VARYING θ = (a) 70 DEG, (b) 100 DEG, (c)
130 DEG, AND (d) 160 DEG

Anisotropic Domain
The anisotropic domain contains an angular bias about -20

degrees. Therefore, the minimum fracture strength is biased to-
wards -20 degrees and maximum is biased about 70 degrees.
Since the fracture strength is equivalent when the loading angle
is shifted 180 degrees, -20 degrees is equivalent to 160 degrees,
which should also show a minimum. Figure 5 shows that this
is true. 70 degrees is the maximum strength, and progressively
gets smaller the further away you get from the angle of maximum
strength. Thus, the angular bias of the domain is made obvious.
Also, as expected, the measure of anisotropy shown in Figure 6
for the SVE size 4x4 is uniformly high for the anisotropic do-
main, all approximately one.

Correlation and Covariance Functions
As detailed in the Formulation section, the correlation and

covariance functions describes how the random field is related
between two different points in the field. For these domains, the
field can change spatially, angularly, and with strength. Aside
from the physical perspective obtained by understanding various
types of correlation of these random fields, the covariance func-
tion in particular is used in generating random fields in many
statistical methods such as the Karhunen-Loeve method. The re-
alized random fields for material properties eventually serve as
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FIGURE 6. UNIAXIAL FRACTURE STRENGTH SN ANISTROPY
MEASURE FOR ANISTROPIC DOMAIN AND SVE SIZE 4x4

random parameters for a stochastic partial differential equation
(SPDE) for the elastodynamic fracture problem. Therefore, this
subsection will detail the correlations developed between the dif-
ferent strength fields and loading angles for both domains, and
the covariance random field results are presented and discussed.

Correlation of Different Fracture Strengths. Ap-
plying the covariance and correlation functions between the in-
dividual fracture strength fields yields the R coefficient detail-
ing the correlation between SHN , SN , SS, and SC for both the
isotropic and anisotropic domains. Since the anisotropic domain
has a strong angular bias, both the mean and min in angle frac-
ture strengths were analyzed and shown in tables 1 and 2. The
angular bias leads to a higher correlation between the min and
mean fields, while reducing the correlation between the angular
dependent SN , SS, and SC strengths to the angular independent
SHN strength. All the minimum strength fields remain highly cor-
related between the two domains, while the correlation between
the mean and minimum fields decrease within the anisotropic do-
main, another indication of the anisotropic angular biased nature
of the domain.

Correlation of Different Angles. While the previ-
ous section discussed the correlation of the individual fracture
strength fields, this section will detail the correlation in angle of
a single strength field, SNA. Figure 7 shows the isotropic do-
main. There is a strong correlation with the field to itself, which
slowly tapers off as the delta between the angles increases. The
profile remains uniform throughout, and since the load repeats
itself past 180 degrees, the figure shows the increasing correla-
tion at the extremes (θ = π). Figure 8 shows the results for the

TABLE 1. PEARSON’S R COEFFICIENT FOR ISOTROPIC
FRACTURE STRENGTH FIELDS

SHN SN,MN SS,MN SC,MN SN,MIN SS,MIN SC,MIN

SHN 1 0.717 0.903 0.354 0.999 1 0.996

SN,MN 0.717 1 0.893 0.619 0.717 0.717 0.713

SS,MN 0.903 0.893 1 0.482 0.903 0.903 0.897

SC,MN 0.354 0.619 0.482 1 0.354 0.354 0.353

SN,MIN 0.999 0.717 0.903 0.354 1 0.999 0.995

SS,MIN 1 0.717 0.903 0.354 0.999 1 0.996

SC,MIN 0.996 0.713 0.897 0.352 0.995 0.996 1

TABLE 2. PEARSON’S R COEFFICIENT FOR ANISOTROPIC
FRACTURE STRENGTH FIELDS

SHN SN,MN SS,MN SC,MN SN,MIN SS,MIN SC,MIN

SHN 1 0.582 0.433 0.382 0.999 1 0.993

SN,MN 0.582 1 0.839 0.933 0.584 0.582 0.563

SS,MN 0.433 0.839 1 0.917 0.435 0.433 0.412

SC,MN 0.382 0.933 0.917 1 0.384 0.382 0.360

SN,MIN 0.999 0.584 0.434 0.384 1 0.999 0.992

SS,MIN 1 0.582 0.433 0.382 0.999 1 0.993

SC,MIN 0.993 0.563 0.412 0.360 0.992 0.993 1

anisotropic domain. For angle θ = 70 degrees, the location of
maximum strength, there is a sharp increase in correlation that
does not smoothly taper off as with the isotropic domain. A re-
duced, wider correlation band is seen across all other angles.

Spatial Covariance. Figures 9 and 10 show the spatial
covariance field for the SNA isotropic and anisotropic domain
fields, respectively. As can be shown, the covariance of the field
indicates the field is only strongly related close to the specified
point in both domains. It is proposed that a spherical covariance

function cov = e
−r2

d2 be used to approximate the covariance field,
where r is the distance away from the point, and d is the SVE
size, LSV E .

Space-Angle Covariance. Space-angle covariance not
only traverses the domain in space, but throughout the space-
angle domain. The horizontal axis in Figures 11 and 12 corre-
sponds to the spatial distance between two points along a given
direction in space (X, Y) plane, while the vertical axes is the dif-
ference of these two points in terms of the angle at which fracture
strength is measured; the fracture angle of one of these points is
considered at the loading angle zero, while for the other, strength
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FIGURE 7. UNIAXIAL STRENGTH SN CORRELATION IN AN-
GLE ISOTROPIC DOMAIN

FIGURE 8. UNIAXIAL STRENGTH SN CORRELATION IN AN-
GLE ANISOTROPIC DOMAIN

at angle θ is considered. For the distance in space, X and Y
are selected such that the spatial domain is being traversed at an
angle of -20 degrees from the base point, which is the angle of
minimum strength. In the isotropic domain, there is no obvious
angular bias shown The anisotropic plot shows a distinct band
about the angle of maximum strength wherein the covariance is
extremely low at θ = 70 degrees, the angle of maximum strength.

aSDG Fracture Simulation Results
The asynchronous spacetime discontinuous Galerkin finite

element method formulated for elastodynamic problems [32] is
used to simulate the fracture within the anisotropic domain. The
method employs discontinuous basis functions across finite el-

FIGURE 9. COVARIANCE FUNCTION IN SPACE ISOTROPIC
DOMAIN Please zoom in to a [-25, 25] x [-25, 25] region, same for
the next figure.

FIGURE 10. COVARIANCE FUNCTION IN SPACE
ANISOTROPIC DOMAIN

ement boundaries and directly discretizes spacetime using non-
uniform grids that satisfies a special causality constraint [33]. In
lieu of traditional traction separation relations (TSRs), an inter-
facial damage model [11] is used to model damage evolution on
crack surfaces. For mode II fracture under compressive loads,
which is common in rock as for example for the problem consid-
ered herein, dynamic contact–stick and contact–slip modes [34]
are incorporated in the model. The use of dual error indicators for
controlling energy error in the bulk and on fracture surfaces [35],
h-adaptivity in spacetime [36], and alignment of element bound-
aries with arbitrary crack propagation directions [11, 37] are all
essential in capturing complexing fracture patterns such as those
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FIGURE 11. COVARIANCE FUNCTION IN SPACE-ANGLE
ISOTROPIC DOMAIN

FIGURE 12. COVARIANCE FUNCTION IN SPACE-ANGLE
ANISOTROPIC DOMAIN

reported in Figures 13 and 14.
The fracture simulations demonstrate the effect of rock frac-

ture strength anisotropy in induced fracture pattern under a com-
pressive load. The computational domain is loaded compres-
sively in the X-Direction until failure. The initial and boundary
conditions are specified such that, before the occurrence of the
first crack, they generate a spatially uniform and a temporally in-
creasing negative strain field εXX , while εXY and εYY are zero.
The fracture strength field is inhomogeneous, as for example see
in Figure 3, the generated random fields are spatially variant. In
addition, the uniaxial tensile strength SN used for these simula-
tions, by construction is angle-dependent. So, the sampled values
for SN are both space and angle dependent. The result in Figure
13 corresponds to the rock sample with no angular bias, while

FIGURE 13. DYNAMIC SIMULATION OF ISOTROPIC FRAC-
TURE FIELD

in Figure 14 the homogenized strengths for the domain with -20
degrees angular bias is used for macroscopic fracture simulation.
As evident when anisotropy is included, the crack pattern will
be much different than that if it is left out. This shows how a
complex fracture pattern can be completely inaccurate if angu-
lar bias (anisotropy) is not included in the model. Assumptions
about how cracks propagate in a given domain can be very flawed
without including anisotropy. Regardless, including spatial inho-
mogeneity is more realistic than assuming the entire domain is
homogeneous.

CONCLUSION
Angular dependency is crucial when performing quasi-

brittle fracture simulations. Without including this anisotropy
into the analysis, the model will miss the influence of weaker
planes or regions within the domain. This will lead to an inac-
curate analysis of the real strength and behavior of the material.
Utilizing the statistical volume element (SVE) approach, a pro-
cess was developed to introduce inhomogeneity and anisotropy
into the solution to develop random fields of material proper-
ties. This process was repeated for varying loading angles be-
tween [0,/pi] with four different SVE sizes. As the SVE size de-
creases, the measure of anisotropy in the model increased greatly,
while larger SVEs approach the RVE limit and were homoge-
neous and contained very little anisotropy. The dynamic analyses
by the aSDG method showed the importance of including inho-
mogeneity and anisotropy into the solution. Without anisotropy,
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FIGURE 14. DYNAMIC SIMULATION OF ANISOTROPIC
FRACTURE FIELD

the quasi-brittle material would be inaccurately assumed to be
equally likely to fail in all directions under the same loading con-
ditions without including these variables.

In future work, rather than assuming a certain probability
distribution for crack lengths, we plan to use actual microcrack
statistics of rocks such as those reported in [38] an more robust
approaches for their generation [39]. In addition, similar to our
previous work in [22, 29] we will use the Karhunen-Loeve (KL)
method [40, 41] to realize random fields that are consistent with
the statistics of homogenized SVEs. The addition of variability
of strength in angle, and anisotropy of strength as in the angle-
biased example, significantly complicates the realization of such
random fields. The isotropic and anisotropic covariance and cor-
relation functions obtained in Section allows the extension of
KL method in [22, 29] for these more general problems.
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