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Effect of Volume Element
Geometry on Convergence to a
Representative Volume
To accurately simulate fracture, it is necessary to account for small-scale randomness in
the properties of a material. Apparent properties of statistical volume element (SVE) can
be characterized below the scale of a representative volume element (RVE). Apparent
properties cannot be defined uniquely for an SVE, in the manner that unique effective
properties can be defined for an RVE. Both constitutive behavior and material strength
properties in SVE must be statistically characterized. The geometrical partitioning
method can be critically important in affecting the probability distributions of mesoscale
material property parameters. Here, a Voronoi tessellation-based partitioning scheme is
applied to generate SVE. Resulting material property distributions are compared with
those from SVE generated by square partitioning. The proportional limit stress of the
SVE is used to approximate SVE strength. Superposition of elastic results is used to
obtain failure strength distributions from boundary conditions at variable angles of
loading. [DOI: 10.1115/1.4043753]

1 Introduction

When a material is modeled as homogeneous in a fracture sim-
ulation, the simulation will not accurately capture the small-scale
randomness inherent in crack propagation due to microstructural
heterogeneity. However, direct simulation of material flaws,
defects, pores, or inclusions may be infeasible due to computa-
tional expense, and/or material characterization may not be avail-
able in sufficient detail. Therefore, probabilistic continuum
models are needed that accurately characterize both material prop-
erties and variability in material properties at a relatively small
scale. Traditional representative volume element (RVE)
approaches in modeling heterogeneous material provide a contin-
uum approximation, but obscure local material variability. Statis-
tical volume element (SVE) approaches provide a continuum
approximation of material properties at a mesoscale, where d is
the length scale of a typical microstructural feature (e.g., inclusion
radius) and L is the macroscopic scale of the structure, and the
size of the SVE and RVE (lSVE and lRVE, respectively) are ordered
as follows:

d < lSVE < lRVE � L (1)

A principal challenge with SVE approaches is the nonunique-
ness of material properties obtained at a scale below the scale of
an RVE. Extensive literature is devoted to the dependency of SVE
apparent properties on the boundary conditions used to obtain the
stress–strain relationship [1–6]. SVE can be used to generate sta-
tistical characterizations of random fields of material properties,
which can be performed for use in stochastic simulation [7–10].
Often, analysis of the accuracy of SVE material properties is con-
sidered as a function of SVE size. Increasing the size of an SVE
increases the accuracy of elastic results. However, whether a

phenomenological model such as Weibull model [11] is used
[12,13], or strength is directly characterized by SVEs [14,15], the
material inhomogeneity is lost at larger representation/averaging
sizes. Moreover, strength properties tend to decrease as the size of
an SVE increases, a phenomenon known as the size effect. To
limit the size effect and maintain fracture strength
inhomogeneities—which are particularly important for fragmenta-
tion studies [13,16]—unlike elastic results, it is thus preferred to
limit the use of large scale SVE (and RVE) for strength
predictions.

Statistical volume elements partition shape influences the deter-
mination of individual SVE properties, as well as statistics drawn
from a population of SVE that partition an RVE. Partitioning a
microstructure with inclusions into collections of Voronoi cells
has been shown to provide an advantage over square partitioning
[17,18]. Using Voronoi cell partitioning, inclusions do not inter-
sect partition boundaries, avoiding the introduction of spurious
stress concentrations. Based on this observation, previous work
has focused on comparison of elastic material property statistics
obtained by square and Voronoi partitioning. The current work
extends previous results to focus on comparison of material
strength properties obtained by square and Voronoi partitioning.
In particular, the dependence of material strength on the angular
direction of loading is investigated. The angular dependence of
strength is important to statistically characterize, as it affects
directionality of crack propagation in a fracture analysis.

2 Square and Voronoi Partitioning of Statistical

Volume Elements

A typical square and Voronoi partitioning of an RVE is shown
in Fig. 1. In this illustration, the side length of the SVE is ten
times the length of the inclusion diameter. In general, a nondimen-
sional parameter d is defined to characterize SVE size, given as

d ¼ lSVE=lRVE (2)
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with variables as defined in Eq. (1). In this work, the side length
of the square RVE is set to a unit value, and the inclusion diameter
is d¼ lRVE/100. To create SVE, the RVE side length is partitioned
by powers of two to generate SVE with sizes d ¼ ð1=4Þ; ð1=8Þ,
and ð1=16Þ. This leads to populations sizes where n¼ 16, 64, and
256, respectively.

Square partitioning is a straightforward method that ensures
each SVE will be of uniform area, although partition boundaries
often intersect inclusions, as shown in the figure. Voronoi parti-
tioning is based on an underlying square partition of the RVE. In
a given square region, if the centroid of a Voronoi cell lies within
this region, the cell is assigned to the corresponding SVE. This
leads to SVE with areas that have relatively high variation at small
SVE sizes, and relatively low variation at large SVE sizes. As
shown in the figure, the Voronoi cell partitioning approach does
not allow inclusions to intersect partition boundaries. For more

details on the partitioning method used in this analysis, see Refs.
[18] and [19].

3 Determination of Statistical Volume Elements

Failure Strength

Material properties determined on an SVE are nonunique, and
depend on applied boundary conditions and material properties of
the matrix and inclusion. Both phases are assumed to be isotropic
with Poisson’s ratio of 0.3 and elastic moduli of 1 and 100 for the
matrix and inclusion, respectively. In this work, a set of mixed
uniform boundary conditions is applied, with displacement condi-
tions in plane in two-dimensional (2D) elements under plane
stress. Superposition is used to combine hydrostatic, pure, and
simple shear boundary conditions (denoted H, P, and S) such that
these results can be used to span the space of applied strains. This
process and the method for determining failure strength as a func-
tion of load angle are briefly summarized here, and explained in
more detail in Ref. [19].

The displacement condition is given as

uj@X ¼ E � x! heiX ¼ E (3)

where @X is the boundary of the body X, hei denotes average
strain, and E is a constant value.

Hydrostatic (H), pure shear (P), and simple shear (S) loading
conditions are given by the three values of E below, respectively,

E ¼ eH �
1 0

0 1

" #

eP �
1 0

0 �1

" #

eS �
0 1

1 0

" #
(4)

With a known uniform strain condition applied at the boundary
of the SVE for each of the three principal loading directions, the
average stress in the SVE is then calculated using finite element
analysis. Using the prescribed strain/average stress relationship for
H, P, and S strains, a stiffness matrix is calculated for each SVE.

The maximum stress at the matrix–inclusion boundary, in the
direction normal to the inclusion, is also found for each SVE
under H, P, and S applied loading. Results are superposed to gen-
erate results for normal and shear load applied from angles of
0–180 deg. A threshold value rTH is set such that when this value
is exceeded at the matrix–inclusion interface, the material has
reached an elastic limit signifying failure. Although this is not the
ultimate fracture strength, for brittle and quasi-brittle materials,
this threshold value is shown to be a close approximation for
quasi-static [20] and low-rate dynamic loadings [21]. The same
assumption is used in prior work for microcracked domains [16]
and random composites [15,19].

The point at which the maximum matrix–inclusion boundary
stress reaches the threshold value is calculated for two specific
cases at each load angle h. First, as shown in Fig. 2, the average
normal SVE stress is fixed to have a unit value, with zero average
shear stress. In this case, the strength value ~snðhÞ is calculated,
which can be multiplied by the maximum matrix inclusion inter-
face stress to achieve the threshold value rTH. As shown in the fig-
ure, this corresponds to tensile strength of the SVE at angle h. The
p/2 angle shift between the angle of tensile strength and the aver-
age normal stress �ry0y0 is based on the convention with which ten-
sile strength is often represented. Similarly, the shear strength
~stðhÞ corresponds to a shear loading that would result in an aver-
age stress of the SVE with condition �rx0x0 ¼ �ry0y0 ¼ 0. The magni-
tude of the nonzero �rx0y0 is again chosen such that the fracture
effective stress at one point on the interfaces between the

Fig. 1 Partitioning of RVE microstructure (top) into square and
Voronoi SVE (middle and bottom figures, respectively) each
with side length S
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inclusions and the matrix reaches rTH. More details on the calcu-
lation of ~snðhÞ and ~stðhÞ can be found in Ref. [19].

4 Determination of Statistical Volume Elements

Maximum Wave Speed

To determine wave speeds, a solution must be obtained in the
form

u ¼ Uf ðx:n� ctÞ (5)

For a wave traveling in angle h, the normal vector is
n ¼ ½cos h; sin h�. The space coordinate is x¼ [x1, x2] and time is
given by t. The constant vector U¼ [U1, U2] represents the shape
of displacement vector, c is the wave speed along the direction
n, and f is an arbitrary scalar function. By using the
displacement–strain compatibility condition, constitutive equation
between strain and stress, and the source free equation of motion
for elastodynamic, the following eigenvalue problem is obtained:

QðC;nÞU ¼ qc2U (6)

where Q(C, n) is the acoustic matrix. The relation between strain
and stress is determined by the symmetric and positive definite
3� 3 stiffness matrix, C, in the Voigt notation. Since C is sym-
metric and positive definite, so is the acoustic matrix and its
eigenvalues, corresponding to qc2, are positive. The components
of the 2� 2 acoustic matrix are given by

Q11 ¼ C11n2
1 þ 2C13n1n2 þ C33n2

2 (7a)

Q12 ¼ Q21 ¼ C13n2
1 þ ðC12 þ C33Þn1n2 þ C23n2

2 (7b)

Q22 ¼ C33n2
1 þ 2C23n1n2 þ C22n2

2 (7c)

for 2D elasticity, the eigenproblem (6) has two eigenvalues
k 2 fkmin; kmaxg. The corresponding wave speed for the eigen-
value k is c ¼

ffiffiffiffiffiffiffiffi
k=q

p
. For an isotropic stiffness matrix, the

maximum and minimum wave speeds correspond to longitudinal
and shear wave speeds, respectively, which are equal for all
directions h.

For the SVEs, however, the homogenized stiffness matrix does
not necessarily correspond to an isotropic material. Thus, the min-
imum and maximum wave speeds depend on n ¼ ½cos h; sin h�.
Accordingly, for each angle h, the maximum nondimensional
wave speed of an SVE is defined as

cMðhÞ ¼
ffiffiffiffiffiffiffiffiffi
kmax

p
(8)

which is the maximum 2D wave speed of the SVE normalized by
one-dimensional wave speed of the matrix (recalling that the elas-
tic modulus of the matrix is 1). It is noted that in definition (8),
the effect of local variations of mass density (based on the local
inclusion density) on the wave speed is not incorporated. If an
SVE could hypothetically be formed only of the matrix phase,
cM(h) would take the value of one for all angles.

5 Results

Results are presented showing the dependence of strength prop-
erties and maximum wave speed on the angle of loading for
square and Voronoi SVE. Results are also presented showing con-
vergence of material properties as a function of partition size for
SVE generated using square and Voronoi partitioning.

5.1 Material Property Dependence on Angle of Loading.
In this section, results showing the dependence of SVE material
properties on the angle of applied load are considered for square
and Voronoi SVE. In the case of strength properties, either the
tensile strength (~sn) or the shear strength (~st) is divided by the
threshold value of stress (rTH). The threshold stress is defined
above as the maximum stress the matrix may reach at the matrix/
inclusion boundary, in the direction normal to the inclusion,
before failure is assumed. The variations of the normalized maxi-
mum wave speed cM as a function of the wave direction h are also
considered.

To illustrate material property dependence on load angle, ten-
sile strength (Figs. 3 and 4) and shear strength (Figs. 5 and 6) are
plotted as a function of load angle.

Figure 3 shows tensile strength in square SVE, and can be com-
pared with Fig. 4, showing the same result using Voronoi parti-
tioned SVE. Overall, the mean value of tensile strength is greater
in Voronoi SVE, and the range of values is narrower. A nearly
sinusoidal pattern is seen in the Voronoi results, where minimum
tensile strength occurs at h¼ p/2 with a period of p/2. The Voro-
noi results show this pattern significantly more strongly than the
square SVE results.

Figure 5 shows shear strength in square SVE, and can be com-
pared with Fig. 6, showing the same result using Voronoi parti-
tioned SVE. As with tensile strength, the mean value of shear
strength is greater in Voronoi SVE, and the range of values is
slightly narrower at most load angles. Again, a sinusoidal pattern
is clearly evident in the Voronoi results, and only mildly sug-
gested in the square SVE results. In the case of shear strength, the
local maximum occurs at h¼p/2 such that the normal and shear
strength functions exhibit a phase shift of p/4, when Voronoi
results are compared.

To consider additional material properties, as well as additional
SVE sizes, results are presented in Figs. 7–12. In these figures,

Fig. 2 Calculation of failure strength ~sn. Failure occurs when
the maximum stress on any inclusion boundary, in the direction
normal to the inclusion, reaches a threshold value rTH [19].
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mean material property values are given as a function of load
angle for different sized SVE.

Figures 7 and 8 show tensile strength results for square and
Voronoi SVE, respectively. In both Voronoi and square SVE, size
of the SVE is inversely related to strength, both tensile and shear,
as expected. Larger SVEs have a higher probability of containing
weaker regions, which lower their strength value. The difference
in SVE strength caused by the variation of SVE size is less pro-
nounced for Voronoi SVE. The sinusoidal quality of the variation
in mean tensile strength is consistent for Voronoi SVE across all
SVE sizes d. For example, all sizes of SVE display local minima

in tensile strength at approximately p/2 (Fig. 8). As d increases,
the amplitude of these curves is also seen to increase in the Voro-
noi case. For square SVE (Fig. 7), a sinusoidal pattern is only
clearly observed at the smallest SVE size (d¼ 1/16), where, in
contrast to the Voronoi case, a local maximum occurs at h¼ p/2.

Figures 9 and 10 show shear strength results for square and
Voronoi SVE, respectively. These results are consistent with the
tensile strength case, in that SVE size is inversely related to
strength, variation in strength is less pronounced in Voronoi SVE,
and sinusoidal variation is not clearly present in square SVE at
large SVE sizes. Sinusoidal variation is observed in Voronoi SVE
at all SVE sizes, with amplitude decreasing as SVE size decreases
(such that the variation in d¼ 1/16 SVE is not easily visualized at
the scale shown in Fig. 10). Comparing Figs. 8 and 10, Voronoi

Fig. 3 Normalized tensile strength as a function of load angle
h for square SVE size d 5 1/8

Fig. 4 Normalized tensile strength as a function of load angle
h for Voronoi SVE size d 5 1/8

Fig. 5 Normalized shear strength as a function of load angle h
for square SVE size d 5 1/8

Fig. 6 Normalized shear strength as a function of load angle h
for Voronoi SVE size d 5 1/8

Fig. 7 Mean tensile strength as a function of load angle h for
square SVE. Strength is averaged over all SVE for a given SVE
size d 5 1/4, d 5 1/8, and d 5 1/16.

Fig. 8 Mean tensile strength as a function of load angle h for
Voronoi SVE. Strength is averaged over all SVE for a given SVE
size d 5 1/4, d 5 1/8, and d 5 1/16.
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tensile and shear strength functions suggest a phase shift of h¼p/
2. Comparing Figs. 7 and 9, a phase-shifted relationship is only
evident in square SVE results at the smallest SVE size d¼ 1/16.
Interestingly, the square (at d¼ 1/16) and Voronoi results are out
of phase with a shift of h¼ p/2. This result is seen for tensile
strength (Figs. 7 and 8) and shear strength (Figs. 9 and 10).

Figures 11 and 12 show maximum wave speed results for
square and Voronoi SVE, respectively. In all cases, for all sizes d
and both square and Voronoi SVE, a clear sinusoidal pattern is
observed, with maxima occurring at h¼ p/2, and with a period of
p/2. For square SVE, the amplitude of the functions increases as
the size d decreases (i.e., the SVE are more anisotropic at smaller
SVE sizes). For Voronoi SVE, the difference in amplitude
between SVE of different sizes is much less pronounced.

Overall, these results show that the material property anisotropy
obtained in an SVE analysis often corresponds to the angle of
loading applied. In other words, anisotropy may not be a true
property of the material, but rather an artifact of the choice of
modeling (partitioning type and size, as well as the choice of
boundary conditions).

Considering the applied loading (see Fig. 2), where the SVE
has square boundaries (or in the case of the large size Voronoi
SVE, relatively square boundaries), loading is aligned with SVE
geometry at the angles h¼ 0, p/2, and p. Only in the small size
Voronoi SVE do the SVEs display isotropy in the mean, or inde-
pendence between the material strength properties recovered, and
the applied angle of loading when the results of the SVEs are
ensemble averaged. At a small length scale, the Voronoi SVEs are
not square, but rather polygonal configurations such as the one
pictured in Fig. 2. In these SVEs, the boundaries are nearly ran-
domly aligned with respect to the angle of loading.

5.2 Convergence of Material Properties. In the results
presented in this section, two measures are obtained for an

angle-dependent property homogenized at the SVE level. First,
we consider the mean of a given property over all angles
of applied loading. Specifically, ~Sn is the mean value of the
angle-dependent SVE strength ~snðhÞ over angle h; that is
~Sn ¼ meanh2½0; p�~snðhÞ. Similarly, ~St ¼ meanh2½0;p�~stðhÞ and
CM ¼ meanh2½0; p�cMðhÞ. These mean values are used to study the
variation of the homogenized property for all the SVEs of one
size, and across groups of SVEs with different sizes. They are,
however, not suitable for studying the anisotropy of the homoge-
nized properties. For this purpose for each SVE, we consider the
standard deviation of the homogenized property. That is, we
define r~sn

¼ s:devh2½0; p�~snðhÞ; r~st
¼ s:devh2½0; p�~stðhÞ, and rcM

¼
s:devh2½0; p�cMðhÞ. Clearly, the higher the variation of a given
angle-dependent field in an SVE over h 2 ½0; p�, the more aniso-
tropic is that homogenized field for the given SVE.

Figures 13–15 show the convergence of material mean tensile
strength ~Sn, mean shear strength ~St, and mean maximum wave
speed CM, respectively, as a function of SVE size for square and
Voronoi partitioned SVE. In each case, the mean material prop-
erty is plotted within an envelope showing range of the minimum
and maximum values recovered for SVE of a given size.

Generally, convergence of mean, minimum, and maximum val-
ues is observed with increasing SVE size. This is expected, as
larger SVE sizes approach the size of an RVE. Material strength
(Figs. 13 and 14) tends to decrease with increasing SVE size. This
is also expected, as larger SVEs have a higher likelihood of con-
taining regions with large stress concentration, and therefore
lower strength. This is the well-known size-effect [22,23] in which
the mean and variation of fracture strength decrease as the size of
a sampled domain increases. It is noted that for tensile strength
(Fig. 13), the maximum SVE size studied in this analysis,
d ¼ 1=4, is not sufficient to capture convergence to mean values,

Fig. 9 Mean shear strength as a function of load angle h for
square SVE. Strength is averaged over all SVE for a given SVE
size d 5 1/4, d 5 1/8, and d 5 1/16.

Fig. 10 Mean shear strength as a function of load angle h for
Voronoi SVE. Strength is averaged over all SVE for a given SVE
size d 5 1/4, d 5 1/8, and d 5 1/16.

Fig. 11 Mean maximum wave speed as a function of load angle
h for square SVE. Strength is averaged over all SVE for a given
SVE size d 5 1/4, d 5 1/8, and d 5 1/16.

Fig. 12 Mean maximum wave speed as a function of load angle
h for Voronoi SVE. Strength is averaged over all SVE for a given
SVE size d 5 1/4, d 5 1/8, and d 5 1/16.
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particularly for Voronoi SVE. In the case of larger SVE sizes,
there are few number of SVE partitioning a given RVE, so statics
are less accurate at larger SVE sizes. The maximum wave speed
results show relatively strong convergence with increasing SVE
size, compared to strength results.

Several interesting differences are observed between the two
SVE types. For fracture strengths, square SVEs have a lower
mean value for all the SVE sizes considered. Unlike Voronoi
SVEs, the boundary of square SVEs can cut through the inclu-
sions. The application of the SVE loads on square boundaries can
cause severe stress concentrations at these sites, explaining the
overall smaller strength of square SVEs. Moreover, we observe
that both the mean and the range of the fracture strength decrease
faster for square SVEs. This may appear to better model the size
effect of this composite. In addition, in Refs. [24–27] and other
similar studies, it is shown that fragmentation and fracture
response of materials is more accurately modeled where fracture
strength is variable, modeled as a random field. However, this
stronger size effect is artificial, and is mainly caused by severe
nonphysical stress concentration points on the boundary of square
SVEs.

Next, we investigate the trend at which the anisotropy of a
homogenized material property decreases versus the SVE size.
The anisotropy of the homogenized properties of square and Vor-
onoi SVEs is compared in Figs. 16–18. Similar to Figs. 13–15, the
three lines for each data set correspond to the minimum, mean,
and maximum of the anisotropy index across all the SVEs of a
given size. That is for a given SVE size, the maximum and mini-
mum values correspond to the most and least anisotropic sampled
SVEs, whereas the mean values represent the overall anisotropy
of the sampled property for that SVE size. From the decrease of

Fig. 13 Tensile strength as a function of SVE size d for square
and Voronoi SVE. Triple lines indicate minimum, mean, and
maximum property values recovered from population of SVE
with given size.

Fig. 14 Shear strength as a function of SVE size d for square
and Voronoi SVE. Triple lines indicate minimum, mean, and
maximum property values recovered from population of SVE
with given size.

Fig. 16 Coefficient of variation of tensile strength as a function
of SVE size for square and Voronoi SVE. The three lines repre-
sent the minimum, mean, and maximum of this anisotropy
index across all SVEs of a given size.

Fig. 15 Maximum wave speed as a function of SVE size d for
square and Voronoi SVE. Triple lines indicate minimum, mean,
and maximum property values recovered from population of
SVE with given size.

Fig. 17 Coefficient of variation of shear strength as a function
of SVE size for square and Voronoi SVE. The three lines repre-
sent the minimum, mean, and maximum of this anisotropy
index across all SVEs of a given size.
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the mean values in Figs. 16 and 17, we observe that the homoge-
nized normal and shear strengths become more isotropic as higher
SVE sizes are considered. Even the most anisotropic sampled
SVEs tend to become more isotropic, since the maximum values
also decrease versus the SVE size. Moreover, the homogenized
strengths by Voronoi SVEs are less anisotropic that those from
square SVEs. Finally, two main differences between elastic and
fracture properties are observed. First, the maximum wave speed
is almost isotropic for all Voronoi SVE sizes considered in
Fig. 18. Second, even for square SVEs that exhibit a higher anisot-
ropy, SVEs of size d¼ 1/4 are almost isotropic. In short, homoge-
nized fracture properties are more anisotropic than the elastic
properties, represented by cM.

6 Conclusions

Results of this work highlight the utility of SVE homogeniza-
tion methods based on Voronoi cell partitioning. Both elastic
wave properties and strength properties are shown to converge
more rapidly with increasing SVE size when Voronoi partitioning
is used. This suggests that wide scatter in recovered material prop-
erties may often be due to stress concentrations on the boundaries
of the SVE when inclusions intersect these partition boundaries.
Eliminating this type of stress concentration gives a more accurate
representation of the true variability of recovered properties due
to geometric variation in material microstructure.

In addition to eliminating spurious stress concentrations on
SVE boundaries, the geometry of Voronoi partitioning holds
another advantage. The relatively random orientation of Voronoi
SVE boundaries, particularly at small SVE sizes, decreases the
angular dependency due to the chosen orientation of loading. SVE
properties (unlike RVE properties) are by definition nonunique;
therefore SVE data will reflect a dependency on the boundary
conditions chosen in the analysis. However, partitioning with
boundaries that are essentially randomly aligned with respect to
loading directions is shown to decrease this dependency when
results are ensemble averaged.

In future work, Voronoi partitioning will be used to model
materials that have anisotropy due to material morphology.
Voronoi partitioning is expected to be a more accurate means of
capturing the true local behavior and variability in an anisotropic
material. Improvements to this modeling technique will be consid-
ered, where SVE geometry is more randomly aligned, particularly
at larger SVE sizes. The goal is to reduce the variability in
recovered properties due to spurious effects (stress concentrations
on the SVE boundary, alignment of SVE geometry with direction
of applied load) so as to capture the authentic local variability
of local material properties due to the morphology of the

microstructure. This true local variability contributes greatly to
the initiation and propagation of cracks in brittle materials. The
probabilistic local characterization of materials that are isotropic
or anisotropic in bulk will be used to increase accuracy in simulat-
ing brittle fracture.
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