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Statistical Volume Elements
for the Characterization of
Angle-Dependent Fracture
Strengths in Anisotropic
Microcracked Materials
Statistical volume elements (SVEs) are used to homogenize fracture strength of rock,
based on the microcrack statistics of a real-world Yuen-Long marble sample. The small
size of SVEs enables maintaining inhomogeneities in fracture properties with lower com-
putational cost compared to methods that explicitly model microcracks at macroscale.
Maintaining inhomogeneity is important to capture realistic fracture patterns in rock as
a quasi-brittle material. Uniaxial tensile, uniaxial compressive, and shear strengths are
derived for arbitrary angle for loading and orientation of a single crack by using the lin-
ear elastic fracture mechanics (LEFM) method and incorporating frictional effects.
Mesoscopic fracture strength fields are generated for different strengths and angle of
loading by traversing the spatial domain with circular SVEs. Increasing the SVE size
smoothens the spatial inhomogeneity and angular anisotropy of homogenized strengths.
Spatial and angular covariance functions of the random fields are obtained to demon-
strate how fracture strength varies in space and by changing the angle of loading. Two
isotropic and anisotropic rock domains are studied and shown to have very different sin-
gle- and two-point statistics. Macroscopic fracture simulations by an asynchronous
spacetime discontinuous Galerkin (aSDG) method demonstrate that most macroscopic
cracks for the anisotropic domain are aligned with the weakest strength planes.
[DOI: 10.1115/1.4044607]

1 Introduction

Many common materials used in engineering systems, includ-
ing rock, concrete, ceramic, and certain composites, are consid-
ered quasi-brittle. Understanding their failure mechanisms is vital
for using and processing these materials across different size
scales. Quasi-brittle materials lack the energy dissipative mecha-
nisms that more ductile materials have [1–3], resulting in a greater
importance to understand the distribution of flaws in the micro-
scale, such as microcracks or inclusions. Crack pattern variability
for similar sized samples with equivalent loading [4] has been
seen due to these microstructural flaws. The size effect, wherein
the fracture strength decreases as the size of the material sample
increases [3,5], is a direct result of these microstructural defects.
Therefore, characterizing these networks of microcracks is impor-
tant to understand the behavior of these materials under loading,
as very different fracture patterns [4], ultimate strengths [6,7], and
other heterogeneities can be seen for different material samples.
Understanding the microstructure of these materials, and its influ-
ence on macroscopic fracture, greatly decreases the risk and
uncertainty inherent in designs that involve quasi-brittle materials.

Certain material types, such as rock with bedding planes, can
contain microstructural defects that are angularly biased, i.e., the
microstructure is anisotropic. Depending on the direction of load-
ing, the material strength can be very different. A major increase
in risk can be assumed if the engineer only uses a homogeneous,
isotropic fracture strength for a given material when designing
and modeling an engineering system. To capture these flaws,

implicit or explicit methods may be used to introduce these
defects into a given model. Explicit methods directly incorporate
the microstructure, above certain length scale, into the solution
scheme. Some examples are lattice modeling [8] and lattice dis-
crete particle modeling [9], which model the flaws as a particle
network connected by springs. Because of the small space and
time scales required to properly resolve the microstructural
defects in larger structures, explicit methods can be very computa-
tionally expensive.

Less computationally intensive implicit methods incorporate
the overall effect of microstructure in the analysis, but do not
directly represent them at the macroscale. An example of an
implicit method is Weibull’s weakest link method [10,11], which
provides a statistical phenomenological characterization of the
fracture strength, and has been used successfully by the authors to
capture the statistical fracture response of rock in hydraulic frac-
turing [12], fracture under dynamic compressive loading [13], and
in fragmentation studies [14]. While these methods are generally
successful in capturing statistical variation for specific properties,
they lack the direct connection from the distribution of micro-
structural defects to macroscopic fracture response.

Therefore, a general method is desired which can link the mate-
rial microstructure to the meso- and macrostructure that does not
require the exorbitant computational costs of explicit methods. To
resolve this issue, homogenization methods are used to link the
material microstructure to the macrostructure by averaging the
effect of the microstructure in a volume element (VE). Similar
approaches have been used to calibrate certain fracture models,
see, for example, Refs. [15–19]. A representative volume element
(RVE), also known as a representative elementary volume in rock
mechanics, is used in homogenization theories to compute bulk
material properties of a composite at the continuum level. The
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RVE should be much smaller than the macroscopic domain size
so that the homogenized properties of the RVE can be assigned to
a point of the continuum domain. Yet, RVEs should be large
enough to be representative; that is, for a given homogenized
property there is not much variation if larger VEs are used for
homogenization. For a macroscopically homogeneous material
with ergodic properties, an RVE is defined [20] such that the
homogenized properties only vary within a specific range across
different realizations of the RVE [21–24]; see also [25,26] for the
statistical models that underline the determination of RVE size in
preceding references.

A volume element which is smaller than the given size require-
ments to form a representative volume element is known as a sta-
tistical volume element (SVE). These elements may be used to
capture the statistical variation in material properties caused by
the material microstructure. Multiple SVEs may be used to prop-
erly characterize the randomness in material properties. Many
studies have been performed to determine how the SVE observa-
tion window [27,28], boundary conditions [29], and microstruc-
ture defect clustering [30] all effect the given material property
statistics. SVEs have been used to capture both the material elastic
and fracture properties.

We have used SVEs to homogenize microcracked rocks in Ref.
[31] to derive an inhomogeneous yet isotropic field for tensile
strength. By computing angle-dependent fracture strengths at the
SVE level, anisotropic rocks were homogenized in Ref. [32].
Herein, we extend the work presented in Ref. [32] by using the
microcrack statistics of a real-world Yuen-Long marble sample
from Ref. [33]. In addition, an index is introduced to determine
the anisotropy of homogenized fracture strength fields. Finally,
following Ref. [34], spatial and angular covariance functions of
the strength fields are used to analyze how the strengths vary in
space and as a function of loading direction, respectively.

Once the anisotropy of fracture strength is considered, there are
two main approaches to incorporate the anisotropy into a macro-
scopic continuum model. First, a second-order microstructure ten-
sor [35,36] in addition to commonly used invariants of the stress
tensor is used to define a general bulk failure criterion. Second, in
contrast to the aforementioned bulk failure models, well-known
interfacial models such as Mohr–Coulomb or Hoek and Brown
[37] are made angle-dependent [38–40] by assigning different ten-
sile strengths or friction coefficients for different angles of
loading.

In this work, the latter approach is adopted, such that for any
potential angle of loading we characterize different fracture
strength parameters. Linear elastic fracture mechanics (LEFM)
theory is used to derive angle-dependent uniaxial tensile, uniaxial
compressive, and shear strengths. The SVE analysis process and
angle-dependent strength formulation are derived in Sec. 2. Then,
isotropic and anisotropic microcrack-filled domains are generated
using real microcrack distribution statistics from Yuen-Long mar-
ble [33] and the statistics of the strength fields are analyzed for
isotropic and anisotropic domains. Finally, the asynchronous
spacetime Galerkin finite element method [41] is used to analyze
the fracture response of these domains with the applied random
fracture strength fields.

2 Formulation

This section defines the statistical volume element approach for
defining fracture strength with respect to varying loading angle in
a quasi-brittle domain containing microcracks. Section 2.1 pro-
vides an overview for the anisotropic fracture analysis process in
a domain with distributed microcracks using SVEs. The micro-
crack length and angle distribution will be detailed in Sec. 2.2.
Then, Sec. 2.3 describes the process to calculate the mesoscopic
angular-dependent fracture strength field. Some useful angle-
independent strength measures are introduced in Sec. 2.4.
Afterward, a description of the covariance function and its use to
determine the correlation of the fracture strength random fields is

provided in Sec. 2.5. Finally, the asynchronous spacetime discon-
tinuous Galerkin (aSDG) method is detailed in Sec. 2.7 for per-
forming macroscopic dynamic fracture simulations within the
given quasi-brittle domains.

2.1 Multiscale Anisotropic Fracture Analysis. Figure 1
details the multiscale model that is described in this work. In step
one and at the macroscale, an RVE of the given material is consid-
ered. In Ref. [33], many samples of Yuen-Long marble were
scanned to calculate the statistics of the material microstructure.
A 32 mm by 32 mm square domain of Yuen-Long marble was
determined to contain a sufficient number of microcracks to be
considered representative. The statistics of microcracks demon-
strate very low sample to sample variability at this scale. As the
size of the RVE decreases, the RVE approaches the SVE regime.
The characteristic size of the SVE, lSVE, is smaller than the overall
size of the domain of interest and the ratio of the SVE size to the
average microcrack length must be small enough that SVE does
not approach the RVE limit. As the ratio of lSVE to the average
microcrack length approaches infinity, randomness is lost, result-
ing in a homogeneous material that does not accurately represent
the inhomogeneity at the mesoscale due to the existence of micro-
cracks. Several SVE sizes will be studied in Sec. 3 to show this
size effect.

Circular SVEs of diameter LSVE are used to transverse the RVE
with spacing S¼ LSVE/n, where n is a grid line spacing variable
which was chosen such that the entire domain is sampled with suf-
ficient resolution regardless of SVE size. For this paper, n is equal
to 5. Within each SVE, the contained microcracks are processed
using LEFM principles, as described in Sec. 2.3. A loading P is
applied at discrete loading angles, h, and a field of mesoscopic
fracture strength is calculated for each angle; cf. step 2 in Fig. 1.
In step 3, the calculated strength values are assigned at the center
points of the SVEs. In Fig. 1, sample uniaxial tensile strength
fields are shown for four different angles of loading. Since the
SVE size is at an intermediate level between the representative
crack and macroscopic domain sizes, the constructed fields are
called mesoscopic strength fields. Finally, if desired, dynamic
fracture analysis can be performed on the same macroscopic
domain shown in step 1 without the explicit representation of
microcracks. Instead, by using the mesoscopic fracture strength
fields, the computational cost is significantly reduced; still, some
level of material inhomogeneity is maintained, which is important
for more realistic fracture simulations.

2.2 Microcrack Length and Angle Distributions. Since
extensive sampling of rock is difficult or expensive, and detailed
microcrack measurements for large domains are scarce, statistical
methods are often used to realize microcracked samples that are
consistent with the microcrack statistics of the original rock mass.
Depending on the method used for realizing samples, different
types of statistics of a microcracked domain are used; see
Ref. [42] for a few examples. In the pick-and-place algorithm,
cracks are modeled as discontinuity lines. The distributions of
crack center location, length, and angle are sampled for each
crack, and a crack with a specific location, length, and angle is
inserted in the domain. This process continues until the target
crack density e0, which is the sum of squares of the microcrack
lengths per unit area of the domain, is reached.

While the pick-and-place algorithm can be employed for differ-
ent microcrack statistics, in this manuscript we use the specific
microcrack statistics provided for a Yuen-Long marble sample in
Ref. [33], given that all specific descriptors required by this
method are experimentally measured and reported therein. Specif-
ically, we employ the statistics of sample S19. The spatial location
of the centers of microcracks follows a uniform distribution, as
the examined Yuen-Long marble is macroscopically homogene-
ous. A power-law distribution is used, and experimentally veri-
fied, to represent the distribution of crack length in Ref. [33]. In
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fact, as discussed in Ref. [43], field observations indicate that
crack length often follows a power law distribution in rock. For
the power-law distribution a minimum value (crack half-length) a0

is assigned to ensure the cumulative distribution function to be
finite and take the value of one for infinite crack half-length; cf.
Eq. (2) below. The cumulative distribution for half-cracks longer
than a0 for an elemental volume V0 is defined as

g að Þ ¼ q�

a

� �z

(1)

where q* and Cauchy distribution exponent z > 1 are the parame-
ters of the power distribution, subject to the condition

V0

ð1
a0

gðaÞda ¼ 1 (2)

To ensure this equality, the lower integration limit, a0 is defined
by

a0 ¼ q�ð ÞzV0

z� 1

� � 1
z�1

(3)

The specific model values for sample S19 are reported in Sec. 3
and used to generate new random crack fields consistent with S19
microcrack length statistics.

The S19 rock sample from Ref. [33] is isotropic and crack angle
follows a uniform distribution. We will use this actual angle distri-
bution to realize a macroscopically isotropic rock domain. Since
one objective of this study is relating the angle distribution of
microcracks to anisotropy of the mesoscopically homogenized
fracture strength fields, we create a second macroscopically

anisotropic rock domain where the angle distribution is intention-
ally nonuniform. A triangular distribution with a peak at
hc¼ 30 deg and a range of hc¼ 25–35 deg is used for this syn-
thetic crack angle distribution. The final parameter for defining
the microcrack domain is the crack density, where for both rock
domains, the crack density of e0¼ 0.243 of sample S19 is used.

It is noted that the statistics of microcracks plays a crucial role in
the homogenized strengths at the mesoscale and macroscopic frac-
ture properties. For example, we have demonstrated that by chang-
ing the shape of microcrack length distribution, while keeping the
mean length fixed, macroscopic fracture strength can change by a
factor of three [44]. Our focus in the remainder of the manuscript
will be on the effect of statistics of microcracks on mesoscopic and
macroscopic response, rather than validation of the macroscopic
response with experimental results. Specific attention is directed to
angular dependency of properties at different scales.

2.3 Fracture Strength Calculations. Within the SVE, the
fracture strength of every microcrack intersecting the element is
calculated. As detailed previously, a circular SVE observation
window was selected. Cracks that are both completely encircled
or only partially intersecting an SVE are considered. For SVEs
which contain no microcracks, a maximum fracture strength is
assigned based on a crack of minimum length. As all of the inter-
secting cracks fracture strengths are calculated, the minimum frac-
ture strength is retained and assigned to the center point of the
SVE, resulting in a mesh of fracture strengths with uniform spac-
ing in both horizontal and vertical directions. Each mesh point
contains a vector of angular-dependent fracture strengths, i.e., the
fracture strength calculated for each discrete loading angle.

It is noted that a few SVEs may contain no cracks. For these
SVEs, a maximum fracture strength is assigned based on a crack

Fig. 1 A multiscale model for anisotropic fracture analysis of microcracked rock

ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems,
Part B: Mechanical Engineering

JUNE 2020, Vol. 6 / 021008-3

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/risk/article-pdf/6/2/021008/6520233/risk_006_02_021008.pdf by U

niversity O
f Tennessee user on 10 Septem

ber 2020



of minimum length to avoid having an infinite strength. This mini-
mum length is twice the value of minimum allowable half-length
crack a0 for the power law distribution in Eq. (3). For the homoge-
nization to be valid, the SVE size should be chosen large enough
such that the majority of SVEs are representative of rock micro-
structure, in that they contain a sufficient number of microcracks.
This size depends on the (length) distribution of microcracks and
crack density. If the SVE size is too small, the maximum strength
based on the minimum crack length is assigned to many SVEs.
However, in this paper, the SVE sizes are chosen large enough
that even for the smallest SVE size, very few SVEs contain no
cracks.

For a crack of half-length a, the strength is calculated using
LEFM principles. There are three assumptions in calculating frac-
ture strengths. First, the interaction of microcracks is not taken
into account. Second, for the microcracks that intersect the bound-
ary of the SVE, the geometric mean of the total microcrack length
and the part that is inside the SVE is used for its effective length
in LEFM calculations; that is, ai

eff ¼
ffiffiffiffiffiffiffiffiffi
aiai

in

p
for microcrack num-

ber i in Fig. 1. Third, as will be described below, the principle of
maximum energy release rate (MERR) [45] is used to compute
fracture strength of individual cracks.

Figure 2 shows the schematic of a single crack with effective
half length aeff with angle hc and local coordinate system ðx0; y0Þ.
The global Cartesian coordinate system is (X, Y). We are inter-
ested in computing various fracture strengths for a loading angle
of h. As shown, the coordinate system (x, y) for far field loading is
at angle h with respect to the global coordinate system (X, Y). Thus,
the relative angle of the crack with respect to x is hd:¼ hc – h. For
computing fracture strengths at angle h, in-plane stresses are
applied in the (x, y) coordinate system. To use LEFM theory, we
need to transfer these stresses to the ðx0; y0Þ coordinate system.
This is achieved by Mohr circle transformation of the in-plane
components of the stress tensor between the two coordinate
systems

rx0x0 ¼ rxx cos2hd þ ryy sin2hd þ rxy sin 2hd (4a)

ry0y0 ¼ rxx sin2hd þ ryy cos2hd � rxy sin 2hd (4b)

rx0y0 ¼ �sin 2hd
rxx � ryy

2
þ rxy cos 2hd (4c)

The strengths for angle h correspond to the following stress ten-
sors r ¼ ðrxx; ryy;rxyÞ in (x, y) coordinate system:

r :¼ ðsNH; sNH; 0Þ hydrostatic tensile strength sNH (5a)

r :¼ ð0; sNðhÞ; 0Þ uniaxial tensile strength sN (5b)

r :¼ ð0;�sCðhÞ; 0Þ uniaxial compressive strength sC (5c)

r :¼ ð0; 0; sSðhÞÞ shear strength sS (5d)

where as mentioned sN(h), sC(h), and sS(h) are positive uniaxial
tensile, uniaxial compressive, and shear strengths at angle h. Note
that there is no argument of loading direction for hydrostatic ten-
sile strength since it corresponds to equal principle stresses sNH

for all angles of loading. We also observe that uniaxial tensile
strength at angle h corresponds to r ¼ ð0; sNðhÞ; 0Þ rather than (sN

(h), 0, 0); for this strength at angle h, we apply a tensile stress nor-
mal to the direction of a hypothetical fracture line with angle h.
This corresponds to only ryy nonzero in Fig. 2. Finally in Eq. (5),
the form of any of the loadings for angle h is known, but the factor
of stress tensor for which the crack with 2aeff at angle hc satisfies
an LEFM fracture criterion corresponds to the magnitude of the
strength.

The resolvent components of traction t¼ (tn, ts) acting on the
crack plane are

tn ¼ ry0y0 (6a)

ts ¼ jrx0y0 j � kh�tniþ (6b)

where tn and ts are the normal and shear components of t, k is the
friction coefficient, and h:iþ is the Macaulay positive operator.
The reason that in Eq. (6b) the positive operator acts on –tn, is that
for the shear stress to induce mode II fracture, the far field shear
stress rx0y0 must be greater than the friction traction kh�tniþ. When
under tensile loading, i.e., when tn � 0, friction is zero (kh�tniþ
¼ 0). We model the crack in Fig. 2 in isolation undergoing far field
normal stress tn, corresponding to mode I fracture if tn> 0. The
resolvent shear stress ts results in a mode II stress intensity factor
(SIF) if acting shear stress jrx0y0 j can overcome friction kh�tniþ, i.e.,
when ts> 0. Thus, modes I and II SIFs at the crack tips are

KI ¼
htniþffiffiffiffiffiffiffiffiffiffi
paeff
p (7a)

KII ¼
htsiþffiffiffiffiffiffiffiffiffiffi
paeff
p (7b)

There are several criteria such as maximum circumferential stress
criterion, MERR, and minimum strain energy density that can be
used to determine whether KI and KII are large enough to result in
propagation at the tips of the crack and at what direction relative
to the crack the extension will propagate. For the MERR criterion,
to investigate crack propagation at a potential kink angle w rela-
tive to crack direction, stress intensity factors at the tip of the kink
crack extension, KI(w) and KII(w), need to be computed from KI

and KII in Eq. (7) [46]. The crack extends in a direction w for
which the energy release rate in terms of KI(w) and KII(w) is maxi-
mum and exceeds the fracture toughness of material [45]. One can
show that the corresponding failure criterion in terms of KI and
KII can very accurately be approximated by

K2
I þ K2

II ¼ K2
c (8)

where Kc is the critical mode I SIF. For plane stress condition,
i.e., for samples with small thickness B, tri-axial stress state is less
pronounced than plane strain condition. Thus, Kc is larger than
KIc, its corresponding value for plane stress condition. In general,
Kc can be obtained from B and KIc [47]. While MERR criterion is
slightly less conservative than maximum circumferential stress
criterion and minimum strain energy density criteria, the form of
the approximate relation (8) greatly simplifies the determination

Fig. 2 Crack angle hc and loading angle h
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of fracture strengths for a crack with relative angle hc to the load-
ing direction.

The process for computing any of the fracture strengths sNH,
sN(h), sC(h), and sS(h) is summarized as followed. First, relative
crack angle is computed from hd¼ h – hc. Second, the stress ten-
sor in (x, y) coordinate system corresponding to the given strength
is chosen from Eq. (5). Third, the stress tensor is transferred to
ðx0; y0Þ coordinate system from Eq. (4). Fourth, resolvent traction
components tn and ts are computed from Eq. (6). Fifth, SIFs KI

and KII are computed from Eq. (7). Finally, the magnitude of the
given strength, e.g., sN(h), is computed such that the failure crite-
rion (8) is satisfied. As will be discussed later, for certain strengths
and angles hd, one or both of tn and ts are negative and Eq. (8) can-
not be satisfied for any magnitude of loading; that is, the given
angle-dependent strength is infinite.

Following this process for the four different strengths, the
angle-dependent strengths are obtained as:

sNH
ffiffiffiffiffiffiffiffiffiffi
paeff
p

Kc
¼ 1 (9a)

sN hð Þ ffiffiffiffiffiffiffiffiffiffipaeff
p

Kc
¼ 1

cos hd
(9b)

sC hð Þ ffiffiffiffiffiffiffiffiffiffipaeff
p

Kc
¼

1

�cos hd sin hd þ k cos hdð Þ ; �
p
2
< hd < �/

1; �/ < hd < /

1

cos hd sin hd � k cos hdð Þ ; �/ < hd <
p
2

8>>>>>><
>>>>>>:

(9c)

sS hð Þ ffiffiffiffiffiffiffiffiffiffipaeff
p

Kc
¼

1; �p
2
< hd < 0

1

cos2hd� k sin2hd
; 0< hd <

p
4
�/

2

� �

1; p
4
�/

2

� �
< hd <

p
4
þ/

2

� �

1

�cos2hd� k sin2hd
;

p
4
þ/

2

� �
< hd <

p
2

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

(9d)

where / :¼ tan�1ðkÞ is the friction angle. Also, note that the
relative crack angle hd is taken in (–p/2, p/2], given that shifts
of p in crack angle do not change the problem description
in Fig. 2. Based on Eq. (9a), the maximum (hydrostatic
tensile strength, NH), corresponding on minimum half-length
crack a0 is Smax ¼ Kc=

ffiffiffiffiffiffiffi
pa0
p

.
The fracture strengths in Eq. (9) are shown in Fig. 3 for k ¼

0.3. As expected, the hydrostatic tensile strength is angle-
independent and takes the value Kc=

ffiffiffiffiffiffiffiffiffiffi
paeff
p

. The uniaxial tensile

strength takes the lowest value when the loading is normal to the
crack, that is, for hd¼ 0. As jhdj ! p=2, a much higher normal
stress in y0 is needed to result in crack propagation through
Eq. (8). For the compressive strength, the resolvent tn is always
negative and the friction term in Eq. (6b) is nonzero. Under this
loading, crack can propagate only in mode II if jtsj � 0; cf. Eq.
(7b). For relative crack angles jhdj � /, the friction traction
kh�tni is higher than jrx0y0 j. Consequently, crack surfaces cannot
slip and have the excess shear stress resulting in mode II crack
propagation. For jhdj > /, slip can occur. The maximum uniaxial
compressive strength of 2 cos /Kc=ð1� sinð/Þ ffiffiffiffiffiffiffiffiffiffipaeff

p
is achieved

for jhdj ¼ /=2þ p=4. As jhdj ! p=2; sCðhÞ tends to infinity.
The only strength whose dependency is not even with respect

to hd is sS(h). When hd¼ –p/2, the stress state (5d) results

in ry0y0 ¼ sSðhd ¼ �p=4Þ and rx0y0 ¼ 0 in Eqs. (4b and 4c). Thus,
tn¼ sS(hd¼ –p/4) and ts¼ 0 in Eq. (6) and the crack is in pure
mode I; cf. Eq. (7). On the other hand, for hd¼ p/4 we obtain
tn¼ –sS(hd¼ p/4) and ts¼ 0. That is, hd¼ –p/4 and p/4 correspond
to pure tension and compression on crack surfaces. Clearly, in the
former case, the strength is equal to uniaxial strength, and in the
latter case, the crack cannot propagate. This explains the nonsym-
metric dependency of sS on hd. In short, for hd< 0, the resultant tn
is positive and crack can propagate in mixed mode. For hd> 0,
tn< 0 and crack can only propagate when resolvent shear stress is
positive, that is tangential stress rx0y0 is larger than friction term
kh�tniþ in Eq. (6b). This occurs for jhd � p=4j > /=2.

For a given SVE, the hydrostatic tensile strength SNH, and
angle-dependent uniaxial normal SN(h), uniaxial compressive
SC(h), and shear SS(h) strengths are defined as

SaðhÞ ¼ mini2I SVE
si
aðhÞ (10)

where a refers to one of the strength modes NH, N, C, and S. The
minimum of strength is taken over microcracks with index i over
I SVE, the set of all microcracks that are in or intersect the SVE;
cf. Fig. 1(b). That is, for a given loading direction and strength
type, the SVE takes the minimum of the corresponding strength of
all the cracks that interact with the SVE.

There are three assumptions in using Eq. (10) as follows. First,
the value of Sa(h) is capped by Smax, the maximum fracture
strength based on the value of a0. Since in Eq. (9) some of these
strengths are infinite or tend to infinity, depending on the angle hd,
for some SVEs Sa(h) may take a very large value even if it con-
tains some microcracks. Using the maximum value Smax basically
denotes an infinite value for Sa(h), corresponding to a situation
that none of the microcracks can propagate for the given angle of
loading. This is specifically relevant to the anisotropic rock
domain as discussed in Sec. 3.2. Second, it is assumed that all
these microcracks are effectively in an infinite domain. This is a
reasonable assumption for the majority of SVEs, if the SVE size
is sufficiently smaller than the macroscopic domain size. Third,
microcrack interaction is not taken into account. Generally,
microcrack interaction reduces the strength. In many studies,
crack interaction is taken into account by reducing the strength
through a nonincreasing function of crack density in the form
y(e0); see, for example, Refs. [33] and [48]. No microcrack inter-
action model is employed in this study. This is because we are
more interested in spatial variation of strengths, averaged by using
SVEs, rather than their absolute values. Moreover, these crack
interaction models often can analytically be computed only for
simplistic microcrack distributions such as periodic array of paral-
lel cracks with the same size. We believe that full-scale finite ele-
ment analysis should be employed to accurately model crack

Fig. 3 Different fracture strengths for the crack in Fig. 2 as a
function of relative crack angle hd for k 5 0.3
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interaction for more general distribution of microcracks. How-
ever, the computational cost of this approach is prohibitive herein,
given that an extremely large number of SVEs are analyzed to
study the statistics of homogenized strengths.

2.4 Angle-Dependency of Fracture Strength. For an SVE,
fracture strengths Sa(h), for a � {NH, N, C, S}, are angle-
dependent. Accordingly, we can define the following angle-
independent measures for an SVE:

mðSaÞ ¼ minh2½0;p�SaðhÞ (11a)

�Sa ¼ meanh2½0;p�SaðhÞ (11b)

Aa ¼
�Sa

1h2 0;p½ �Sa
(11c)

where 1 stands for standard deviation. If angular dependency of
fracture strength is not very high and there is not a specific bias
with respect to a given angle, for example, rocks with bedding
plane, the minimum SVE strength m(Sa) over all angles of load-
ing, can be considered as a reasonable angle-independent fracture
strength for the SVE. The mean SVE strength, �Sa , is another (less
conservative) alternative for this purpose. The anisotropy index,
Aa corresponds to the coefficient of variance of the angle-
dependent strength Sa. For an SVE with isotropic strength Aa¼ 0.
Conversely, it takes higher values as the angular variation of
strength increases. In subsequent sections, we use Aa as a measure
of fracture strength anisotropy.

2.5 Covariance and Correlation Functions. We are inter-
ested in studying how the strength fields change spatially and
angularly. The strength field Sa, a � {NH, N, C, S}, is a function
of space-angle coordinate n¼ (X, Y; h). The covariance function
between two space-angle coordinates nA and nB for strength Sa is
denoted by cova and is defined as

covaðnA; nBÞ ¼ EððSaðnAÞ � lAÞðSaðnBÞ � lBÞÞ
¼ EððSaðnAÞSaðnBÞÞ � lAlB

(12)

where E is the mean value operator and lA, lB are shorthands
for means of Sa at nA and nB; that is, lA ¼ EðSaðnAÞÞ and
lB ¼ EðSaðnBÞÞ.

After the covariance function is calculated, the correlation of
the two variables can then be calculated. The Pearson correlation
coefficient, referred to as Pearson’s r, is used to calculate how
correlated the two variables are. If r is equal to þ1, then the two
variables are completely positively linearly correlated, while if
equal to –1 the variables are completely negatively linearly corre-
lated. An r value equal to 0 means that the two variables are not
linearly correlated at all. The correlation function for strength Sa

between its values at space-angle coordinates nA and nB is denoted
by corra(nA, nB) and is defined by

corra nA; nBð Þ ¼ cova nA; nBð Þ
1A1B

(13)

where 1 refers to the standard deviation and 1A; 1B are shorthands
for the standard deviation of Sa at points nA and nB, respectively.

That is, 1A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
covaðnA; nAÞ

p
and 1B ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
covaðnB; nBÞ

p
.

These two covariance and correlation functions are then used to
determine how fracture strength fields are related in space and in
angle. Homogenizing random fields that are consistent with mate-
rial microstructure, in this context, is of crucial importance for the
resulting stochastic partial differential equations for elastody-
namic fracture problem. Investigating how these fields are related

provide an interesting look at understanding the fracture strength
fields for a given material.

2.6 Calculation of Mesoscopic Field Statistics. The statis-
tics of fracture strengths, homogenized at the mesoscale, depend
on the statistics of microcracks at the microscale and the size of
SVE. As mentioned in Sec. 2.2, two distinct isotropic and aniso-
tropic microcrack statistics are used at the microscale. We assume
that the mesoscopically homogenized fields are strongly station-
ary in space, in that the probability density function (PDF) of
Sa(n), n¼ (X, Y; h), does not depend on its spatial coordinate
(X, Y) for all a � {NH, N, C, S}; this condition is also referred to
as weakly homogeneous in homogenization field. This implies that
pointwise quantities such as mean EðSaðnÞÞ and variance also
only depend on (X, Y). Furthermore, higher-order moments such
as covariance function will depend on relative spatial distance of
the points, not their absolute spatial position. Thus, in Sec. 3 when
the PDFs of Sa are presented, only their angular argument is main-
tained. Moreover, the spatial dependence of the covariance func-
tion in Eq. (12) is only through DX¼XB – XA and DY¼ YB – YA,
the spatial difference of nA and nB, and the function can be
expressed as

gcovaðDX;DY; hA; hBÞ : ¼ covað0; 0; hA; DX;DY; hBÞ
¼ covaðXA;YA; hA; XB; YB; hBÞ

(14)

This will be used in reported covariance functions in Sec. 3.3.
The second assumption for the mesoscopic fields is their ergo-

dicity, in that the statistical properties can be deduced from a sin-
gle, sufficiently large realization of these fields. That is, for either
of the two isotropic and anisotropic microcrack models, only one
rock domain is realized and subsequently homogenized by the
SVEs. This simplifies the computation of PDFs of Sa(h) in
Secs. 3.1 and 3.2, as the spatial domain PDF of Sa over that single
realization is computed and used in lieu of ensemble PDF of Sa(h)
at a fixed spatial location over many realizations. Moreover, the
assumption of the ergodicity for the first moments is used to simi-
larly compute covariance function gcov in Eq. (14) by moving the
base point in one realization, rather than computing the function
across many realizations. This assumption is used to compute the
covariance (and correlation) functions in Sec. 3.3.

The spatial stationary condition assumption is justified by the
fact that the spatial location of microcracks in sample S19 is
reported to follow a uniform distribution [33]; as discussed in Sec.
2.2, this would result in a uniform spatial distribution of crack
center-points in the pick-and-place algorithm. In addition, if the
realized rock domain is large enough, based on the details of
domain realization scheme and statistics of microcracks, the sta-
tistics of mesoscopic fields homogenized by this realization
should be representative of the ensemble statistics; this has been
the rationale for assuming ergodicity condition for the pointwise
PDF and covariance function. Stationarity and ergodicity assump-
tions are often used in geo-statics [49] and homogenization [22]
fields. It is noted that the weaker wide-sense stationarity, i.e.,
second-order stationarity, is also used in homogenization, e.g.,
Refs. [20] and [23], where only the mean value and covariance
function are stationary. While strong stationarity and the afore-
mentioned ergodicity conditions are used and justified for this
study, we emphasize these conditions can be violated in many
practical applications; see, for example, the discussion on the sta-
tionary condition for geo-masses in Ref. [50].

2.7 Asynchronous Spacetime Discontinuous Galerkin
Method. The aSDG finite element method formulated for elasto-
dynamic [41] is used for the analysis of domains with mesoscopic
inhomogeneous and anisotropic fracture strength fields. The
method utilizes discontinuous basis functions across all element
boundaries and directly discretizes spacetime using nonuniform
grids that satisfy a special causality constraint; the Tent Pitcher
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[51] algorithm advances the solution by consequently solving
local patches (collections) of spacetime elements, until the entire
spacetime domain is filled with tetrahedral elements for two-
dimensional (2D) problems. Unique properties, such as local and
asynchronous solution scheme, arbitrarily high and local temporal
order of accuracy, and linear solution scaling versus the number
of elements, result in a highly accurate and efficient solution
scheme for elastodynamic problem.

An interfacial contact and damage model [52] is used to model
the processes of debonding and contact-stick/contact-slip mode
transitions in rock. Motivated by a model in Ref. [53], an effective

stress scalar value, s
^

, combines positive normal and shear traction
components. The effective stress is used for crack nucleation,
propagation direction, and damage evolution criteria; a crack is
nucleated at a location X¼ (X, Y), if the effective stress at X
exceeds the mesoscopic uniaxial tensile strength field at that loca-

tion for any angle, that is if s
^ ðX; hÞ � SNðX; hÞ for any h �

[0, 2p). The crack propagation direction requires extension from a
crack tip (or a nucleation point) in a direction hext for which

s
^ ðhextÞ=SNðX; hextÞ is a local maximum and is greater than one.
Finally, for a point X on an existing (or extended) crack surface
with angle hc, damage evolution is governed by the comparison of

the corresponding effective stress and strength; that is s
^ ðX; hcÞ

and SN(X, hc), respectively. Steps 3 and 4 in Fig. 1 show sample
mesoscopic strength fields (at four angles) and a macroscopic
fracture response obtained by the aSDG method. We refer the
reader to Refs. [14] and [52] for the overview of the damage
model and aforementioned fracture criteria.

Three different sets of error indicators and mesh adaptive oper-
ations are used to ensure the accuracy of dynamic fracture prob-
lem. First, energy dissipation within individual finite elements is
used as an error indicator to ensure the accuracy of the solution of
elastodynamic problem. Second, an energy-based error indicator
is used on contact/fracture surfaces to measure and control the
error in satisfying corresponding interfacial constitutive equations
[54]. The h-adaptive scheme in Ref. [55] simultaneously refines
and coarsens the elements in spacetime to ensure the preceding
errors are sufficiently small. Third, the fracture propagation crite-
rion based on macroscopic effective stress can predict crack prop-
agation in arbitrary directions. Highly advanced mesh adaptive
operations in spacetime modify the spatial front mesh used by the
aSDG method to align interelement boundaries with new crack
directions [56]. Thus, the method has the flexibility of extended
finite element methods (XFEMs) [57,58] and generalized finite
element methods (GFEMs) [59,60] without the need to use
enriched finite elements. Moreover, for rock fracture, particularly
in dynamic regime and in the presence of material inhomogene-
ities, highly complex features such as microcracking, crack
branching, and crack intersection are observed that cannot be eas-
ily modeled with XFEMs and GFEMs. We refer the reader to Ref.
[61] for a more thorough discussion on the advantages of the
aSDG method to XFEMs and GFEMs.

3 Numerical Results

The numerical results for each domain, isotropic and aniso-
tropic, will be presented here. Each domain is rectangular, cen-
tered at Xcenter¼ (0, 0) and spans 40 mm in both X and Y
directions, i.e., the domain spans from [–20, –20] to [20]. As
described in Sec. 2.2, the microcrack statistics of S19 Yuen-Long
marble sample from Ref. [33] is used to create the two domains.
For the half-crack length power law distribution, the power law
Cauchy distribution exponent z is equal to 2.017 and the distribu-
tion numerator q*V0 is equal to 0.007. A mean crack length is
2a¼ 0.141 mm. The minimum half crack length of a0 is defined as
0.0075 mm, or 2a0 ¼ 0:015 mm. This minimum crack length is
used to define Smax. The crack density is e0¼ 0.243.

The isotropic domain has a uniform crack angle distribution
between [0, 360] deg and has no angular bias. Crack angle for the

anisotropic domain has a triangular distribution with the range of
[25,35] deg and a peak value of 30 deg. The material Poisson’s
ratio is 0.25, and Young’s modulus is 34.65 GPa. The result of the
SVE analysis is shown below for each domain. The generated
microcrack domain is shown in Fig. 4, and the given length and
angle PDFs are shown in Fig. 5.

3.1 Isotropic Domain. As detailed previously, the isotropic
domain has a uniform crack distribution of hc in [0, 360] deg. The
SVE analysis process was used to process the microcrack domain
to develop mesoscopic strength fields using multiple SVE sizes:
LSVE¼ 1, 2, 4, and 8 mm. Since fracture strengths are assigned at
the centers of the SVEs, the edge size of the square region for
which fracture strength is assigned is 40 – LSVE mm, with the
smallest value of 32 mm for LSVE¼ 8 mm. This explains why
larger 40� 40 mm2 domains are considered in Fig. 4, so that the
smallest edge size of the mesoscopic fracture strength fields
matches the 32 mm edge size of the VEs in Ref. [33]. From here
on, all homogenized mesoscopic strength fields are shown in a
square with 32 mm edge size.

The loading angle h was varied between [0, 180] deg with a dis-
crete angular spacing of 2 deg within this range, resulting in 90
discrete loading angle strength fields. The minimum uniaxial ten-
sile, uniaxial compressive, shear, and hydrostatic tensile fracture
strengths were calculated for every crack in the domain, with the
minimum strength retained for each SVE.

At a glance at Fig. 6, there is no discernible trend showing a
change of strength depending on the loading angle for an isotropic
domain. By calculating the statistics of the mesoscopic strength
field, the PDF of the strength field at each discrete loading angle
can be compared. From Fig. 7, the PDF for each loading angle
confirms that general strength of the domain does not change
depending on the loading angle, as there is no bias in the direction
of microcracks.

The effect of SVE size on homogenized strengths is shown in
Fig. 8. As the SVE size increases, the (spatial) variation of
homogenized SN and its corresponding mean value decrease. This
is the well-known size effect for quasi-brittle materials [3,5]. As
LSVE increases, the SVE tends to the RVE limit, explaining the
decrease in the variation of homogenized strengths. Also, the like-
lihood of containing larger cracks increases as LSVE increases.
This explains the decrease in the overall values of SN. Again, the
PDF of the strength field shown in Fig. 9 agrees with this analysis.
As the SVE size increases, the mean strength of the field decreases
and the standard deviation of the response becomes smaller. It is
noted that if LSVE were chosen sufficiently smaller than 1 mm,
many SVEs would contain no cracks and would be assigned the
strength Smax, as described in Sec. 2.3. This would result in a bi-
modal PDF for SN; see, for example, Fig. 9 in Ref. [32].

We use AN to study the anisotropy of the homogenized strength
field SN. A field of anisotropy index is constructed by assigning
the value of AN for each SVE at its centroid. While the measure of
anisotropy is defined for all angle-dependent strengths in
Eq. (11c), the results are only presented for SN.

Figure 10 shows the spatial distribution of AN for different SVE
sizes. While for easier comparison of results, the maximum limit
of 1 is used in all contour plots, AN can be arbitrarily high. Since
the distribution of crack angle is uniform in [0, 360] deg, we
expect the macroscopic response of the domain to be isotropic.
That is, AN should tend to zero at all points as LSVE increases
toward infinity. This aspect can be observed in the figure. For the
smallest SVE size in Fig. 10(a), AN varies with almost the same
high spatial frequency that SN fields varies in Fig. 6. There are
several islands of high anisotropy measures that are caused by
highly anisotropic distribution of microcrack angles in these
regions. Some of the zones with the highest values of AN are
framed in the figure. For larger SVE sizes in Figs. 10(b)–10(d),
the intensity of the anisotropy index at the peak points decreases
and the field is generally smoothened. The same argument that is
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used in the decrease in fracture strength in Figs. 8 and 9 for larger
SVE sizes applies here; for this macroscopically isotropic mate-
rial, the angle distribution of the most critical (longest) cracks
within an SVE tends to its macroscopic uniform distribution of
[0, 360] deg. The spatial variation of this field also decreases,
again, because the SVEs tend to the RVE limit. However, for
LSVE¼ 8 mm, the same islands of high AN persist, even though

their intensity and sharpness have significantly decreased com-
pared to those in Fig. 10(a).

3.2 Anisotropic Domain. The anisotropic domain was gener-
ated with a triangular distribution in crack angle, with a peak of
hc¼ 30 deg and a range of [25,35] deg; cf. Fig. 5(b). Therefore,
the lowest fracture strengths should be for loading angles close to
h¼ 30 deg, since this loading angle will effectively be pulling the
cracks open. The maximum strength of SVEs should be close to
h¼ 120 deg, since this is pulling the cracks almost parallel to their
direction.

By viewing Fig. 11, the differing trend in strength based on
loading angle can be seen. Loading angles of h¼ 120 deg creates
a uniform, homogeneous high strength field equal to Smax, corre-
sponding to minimum crack length 2a0 ¼ 0:015 mm; since most
cracks are almost parallel to loading angle, i.e., hd � p/2, sN(h)
tends to infinity in Eq. (9b). At 90 deg apart from this, h¼ 30 deg,
a nearly uniform low-strength field is observed in Fig. 11(a). This
trend is confirmed by the PDF of the strength field by varying the
loading angle, as shown in Fig. 12. As the strength gets closer to
the h of minimum strength for the anisotropic domain, the mean
strength steadily decreases. When comparing the isotropic PDF
shown in Fig. 7 to the anisotropic PDF shown in Fig. 12, the effect
of anisotropic crack distributions can be shown clearly. An inter-
esting note to this is that for anisotropic domains, the actual
strength of the field can be much higher over a wide range of load-
ing angles compared to isotropic domains. Understanding the ani-
sotropy of a given material can be crucial to whether a given
material could be used for a specific application and loading
condition.

Figure 13 shows the spatial distribution of the anisotropy mea-
sure for the anisotropic domain for different SVE sizes. Since
microcrack angles are biased around hc¼ 30 deg, this domain is
anisotropic even when the VE size tends to infinity; the lowest
and highest strengths are expected at angles hd¼ 30 and
hd¼ 120 deg, respectively. Overall, as the SVE size increases, the
spatial frequency of variations of AN decreases and the field
becomes more uniform. This is because the SVE tends to the RVE
size limit.

Another observation is that the averaged fracture strength field
SN is less anisotropic for smaller SVE sizes. As the LSVE

increases, there are more microcracks contained in an SVE and
very low strengths are expected for hd in [25,35] deg, particularly
for the mode of the crack angle distribution hd¼ 30 deg. This
results in a highly angle-dependent, yet more spatially uniform
distribution for SN, reflected in more uniform and higher values
for AN in Figs. 13(c)–13(d). In contrast, for smaller SVEs, there is

Fig. 4 Generated microcrack domains: (a) isotropic domain and (b) anisotropic domain

Fig. 5 Generated microcrack domain crack PDFs: (a) length 2a
(mm) and (b) hc (deg)
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a higher variability in angles within [25,35] deg that have the lon-
gest cracks, thus the lowest strengths, within the SVEs. Thus, the
averaged strength field is less anisotropic, yet more spatially vari-
able due to higher variability of the statistics of microcracks
within the SVEs. The frames regions in Fig. 13 demonstrate that,
similar to Fig. 10, the regions of higher anisotropy are preserved
and averaged as the SVE size increases.

To represent this difference in the isotropic and anisotropic
domains, four SVEs were selected based on the measure of anisot-
ropy, AN. Four points, chosen from the lowest measure of anisot-
ropy to highest in the isotropic domain, are shown in Figs. 10(a)

and 13(a). While the two domains do not have the same micro-
crack distribution and are unrelated, the same points were used for
both isotropic and anisotropic domain. P2 in the isotropic domain
was selected such that it corresponded to the same coordinates as
the location of the highest anisotropy in the anisotropic domain.
The coordinates of each point, measure of anisotropy AN, and
mean strength �SN are shown in Table 1, and how the respective
uniaxial strength field SN(h) changes in angle is shown in Fig. 14.

For the isotropic domain, as AN increases, the strength field
becomes more anisotropic, dominated by one angle of the highest
and lowest strength. The standard deviation increases such that
the peak and minimum strength are further away from the given
mean strength. For the isotropic domain, each SVE contains a dif-
ferent angle of maximum and minimum strength. The measure of
anisotropy is a good indicator for the relative dominance of one
crack angle contained in that SVE.

The anisotropic domain contains a dominant angle of maximum
strength no matter the level of anisotropy. In the anisotropic
domain, P2 contains the highest measure of anisotropy. As is
expected, the width of the angular band of maximum strength for
P2 is also the narrowest, as shown in Fig. 14(b). Generally, while
the angle of maximum and minimum strength is roughly the same
for all SVEs in the anisotropic domain, the measure of anisotropy
indicates how narrow the band of maximum and minimum
strength is, which is caused by the SVE only containing cracks
within a narrow angular distribution.

In short, for the isotropic domain, measure of anisotropy is
higher for smaller SVEs and it tends to zero for larger SVEs, as
shown in Fig. 10. In contrast, for the anisotropic domain, AN tends
to a finite high value for larger SVEs and it takes lower values for
smaller SVEs. For both cases, the homogenized strength fields are
more inhomogeneous for smaller SVE sizes. Since maintaining

Fig. 6 SN(h) mesoscopic isotropic strength fields (LSVE 5 1 mm) at various h: (a) h 5 30 deg,
(b) h 5 60 deg, (c) h 5 90 deg, and (d) h 5 120 deg

Fig. 7 Isotropic SN(h) PDF for varying h
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material inhomogeneity is desirable in fracture analysis, the
smaller SVE size LSVE¼ 1 mm is used to produce mesoscopic
strength fields for the macroscopic simulations in Sec. 3.4.

3.3 Covariance and Correlation. We first study the depend-
ence of the covariance and correlation functions on space and
angle coordinates for SN. Next, the correlation between different
angle-independent strengths derived from Sa, a � {NH, N, C, S}
is investigated. In the following, we use the assumed stationarity
and ergodicity discussed in Sec. 2.6 to compute the covariance
and correlation functions based on only the single realization for

each rock model, and to express the covariance function as a func-
tion of spatial distance of the two points; cf. Eq. (14).

3.3.1 Spatial Correlation. We first analyze the form of covar-
iance function in space. That is, nA and nB are chosen such that
the same loading angle is chosen for both, meaning that hA¼ hB.
For this analysis, we use the strength field SN homogenized by
LSVE¼ 1. Moreover, hA¼ hB is set to zero to focus on spatial cor-
relation of uniaxial tensile strength for zero degree loading direc-
tion. This spatial covariance function of SN for zero loading
direction is only a function of change of spatial coordinate
(DX, DY) and is denoted and defined by covXNðDX;DYÞ
¼ covNðDX;DY; 0; 0Þ. This function can be evaluated from a sin-
gle homogenized strength field by moving the space position of
nA and keeping the spatial difference of nB and nA fixed and equal
to (DX, DY).

Figure 15 shows covXN for both isotropic and anisotropic
microcrack statistics. Several observations can be made. First,
from the circular contour lines, it is evident that the covariance
function is only a function of the relative distance of the two
points and not their relative angle. That is the spatial covariance
beyond being homogeneous (depending on only on relative spatial
difference of nA and nB) is also isotropic (not being a function of
relative spatial angle between nA and nB). Second, we observe that
the spatial covariance function quickly tends to zero in a spatial
range roughly equal to the SVE size. This corresponding to tra-
versing about 5 SVEs as n is chosen equal to 5; cf. Sec. 2.1. Third,
the spatial covariance function has an almost identical form for
both isotropic and anisotropic microcrack distribution models.

3.3.2 Angular Correlation. Next, we analyze the form of the
covariance function in angle. That is, nA and nB share the same
spatial location (X, Y), but have arbitrary angles 0 � hA, hB< p.
Again, considering SN for LSVE¼ 1, this covariance function is

Fig. 8 SN(h) mesoscopic isotropic strength fields (h 5 0 deg) for different SVE sizes: (a)
LSVE 5 1 mm, (b) LSVE 5 2 mm, (c) LSVE 5 4 mm, and (d) LSVE 5 8 mm

Fig. 9 Isotropic SN PDF for varying SVE size LSVE
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defined and denoted by covhNðhA; hBÞ ¼ covNð0; 0; hA; hBÞ.
Similar to the calculation of covXN , the spatial stationarity of
homogenized strength fields is used to populate the statistics for
covhN by moving (X, Y) in a realization of SN.

Several observations are made for covhN of the isotropic
domain in Fig. 16(a). First, the value of the function along the
diagonal line hA¼ hB¼ h corresponds to covhN (h, h), the variance
of the uniaxial tensile strength for angle h. Since the orientation of
microcracks is isotropic (uniform in [0, p]), we expect the statis-
tics of SN(X, Y, h) to be stationary in h as well, that is, independent
of the angle of loading. Consequently, the variance of SN(h) too
should be independent of h, meaning that the value of covhN(hA,
hB) on diagonal hA¼ hB¼ h should be constant. The small varia-
tions of covhN on this diagonal in Fig. 16(a) are contributed to
numerical errors associated with the finite set of values used in
evaluating the covariance function.

Second, again from the stationary condition of SN in h,
covhN(hA, hB) should only be a function of the relative difference
of the angles hB – hA rather than their individual values. Since
SN(X, Y, h) is periodic in h with period p, covhN(hA, hB) is a peri-
odic function with the solution in [0, p)� [0, p) (the part shown in
the figure) repeating in 2D ðhA; hBÞ 2 R2 angle space. Consider-
ing these facts, the value of the function only depends on the dis-
tance of the point (hA, hB) from the diagonal hA¼ hB line. Again,
the small deviation of the covhN from this condition in Fig. 16(a)
is a consequence of the finite number of points used for computing
the covariance function. Finally, we observe that the covariance
function tends to zero for an angle difference of about jhB � hAj ¼
30 deg.

The covariance function in angle for the anisotropic domain is
shown in Fig. 16(b). Again, the value on the diagonal hA¼ hB¼ h
is the variance of SN(h). For the anisotropic domain, the highest
variances of SN(h) are observed at angles about 10 deg outside the

angles corresponding to the highest strength around 120 deg. The
observed high variance is a consequence of stipulating a maxi-
mum strength corresponding to minimum allowable crack length
2a0; cf. Sec. 2.2. Overall, we observe a much more complex form
for the covariance function of anisotropic domain compared to
that in Fig. 16(a); specifically, due to the anisotropy of SN(h),
covhN(hA, hB) is no longer only a function of the angle difference
jhA � hBj.

The angular correlation function, defined by corrhNðhA; hBÞ
¼ corrNðXA ¼ X;YA ¼ Y; hA; XB ¼ X;YB ¼ Y; hBÞ, is shown for
isotropic and anisotropic rock domains in Fig. 17. As expected,
strengths SN(X, Y, hA) and SN(X, Y, hB) are highly correlated as the
angle difference tends to zero. In fact, for hA¼ hB¼ h, by defini-
tion the correlation is one, given that the two strengths coincide.
This corresponds to the value of one on diagonal line hA¼ hB for
both cases in Fig. 17. For isotropic rock, fracture strengths are
highly correlated for an angle difference jhB � hAj roughly less
than 30 deg, and the correlation is almost zero for higher angle
differences. The zero correlation of fracture strength for this high
of an angle difference can be compared to zero correlation
between the strength of two points that are roughly 1 mm apart in
Fig. 15.

The angular correlation of SN for the anisotropic domain is
vastly different; aside for a 10 deg range centered around 120 deg,
the angle corresponding to the highest strengths, fracture strength
of any two angle of loading are highly correlated. This is due to
the fact that the majority of cracks are aligned close to 30 deg, and
in approximate sense, 1= cosðh� 30Þ is the factor that relates
strength at angle h to that for the 30 deg, i.e., the weakest strength;
cf. Eq. (9b) and note that hd � h – 30. Clearly due to the local var-
iation of crack angle in the range [25,35] deg, there is not this per-
fect correlation between SN at two arbitrary angles; however,
correlations close to one are observed in Fig. 17(b). The zero

Fig. 10 Measure of anisotropy, AN, for the macroscopically isotropic domain for different SVE
sizes: (a) LSVE 5 1 mm, (b) LSVE 5 2 mm, (c) LSVE 5 4 mm, and (d) LSVE 5 8 mm
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correlation of high strength angle range and other angles is con-
tributed to assigning Smax for angles around 120 deg.

3.3.3 Correlation Between Different Strength Types. Finally,
we study the correlation between different fracture strength fields.
To more effectively focus on the type of strength, rather that
angle-dependent strengths Sa(h), we use the two alternatives of
SVE angle-independent strengths proposed in Sec. 11. The
�SN ; �SS , and �SC in Eq. (11a) provide an overall average angle-

independent strength for an SVE. In contrast, m(SN), m(SS), and
m(SC) are the most conservative choices by taking the minimum
of strengths over all angles of loading in Eq. (11b). When for a
given LSVE, i.e., observation size, strength anisotropy is low,
either of these two choices of strength can be used to define a
unique isotropic strength for a given spatial location. For example,
we have used the mean and min of uniaxial normal strengths for
two different types of composites in Refs. [62] and [63], respec-
tively. However, in these works only macroscopically isotropic
materials were considered and the correlation between different
strength types was not studied.

The Pearson correlation coefficient between these six derived
angle-independent and inhomogeneous strength fields and the
already angle-independent strength SNH are provided in Table 2
for the isotropic domain. Very high correlations are observed

between SN, �SN ; �SS , and �SC . The lowest value corresponds to a

correlation of 0.847 between SNH and �SC . This can be contributed
to pure mode I and mode II fracture for hydraulic tensile and uni-
axial compressive loadings, respectively. In addition, for a single
crack sC is highly anisotropic, and even in the zone for which sC is
finite, its value quickly tends to infinity; cf. Eq. (9c) and Fig. 3.
The highly different fracture modes for a single crack explains the

lower correlation between SNH and �SC , even after the operations

(10) and (11b) are taken into account to derive these angle-
independent SVE strengths.

However, if instead of using angular mean of strengths in an
SVE, their minimum value is used, and a perfect correlation is
observed between SN, m(SN), m(SS), and m(SC). By inspecting
Fig. 3 and Eq. (9), we observe that the angular minimum of all
strengths sN, sN, sS, and sC is the same. Thus, from Eqs. (10) and
(11a), for all a 2 fNH;N;C; Sg; mðSaÞ ¼ Kc=

ffiffiffiffiffiffiffiffiffiffiffiffi
pamax
p

, where amax

is the maximum half-length of a crack within an SVE. That is, SN,
m(SN), m(SS), and m(SC) are all equal, explaining their perfect
correlation.

Fig. 11 SN mesoscopic anisotropic strength fields (LSVE 5 1 mm) at various loading angles:
(a) h 5 30 deg, (b) h 5 60 deg, (c) h 5 90 deg, and (d) h 5 120 deg

Fig. 12 Anisotropic SN PDF for varying h
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From the preceding comparison of �Sa and m(Sa), it appears that
if one aims to simplify the fracture strength fields by eliminating
their angular-dependency, the mean value is a more appropriate
choice for microcracked domains as it maintains the fundamental
differences between different types of strength. Also, as elabo-
rated in Ref. [62], the use of angular minimum strengths can be
too conservative.

The correlation coefficients for the anisotropic domain are pro-
vided in Table 3. As explained, the correlation between all mini-
mum strengths and SNH is one. For the mean strengths, the
correlations are considerably higher than those for the isotropic
domain, with a minimum value of 0.967. Similar to high correla-
tion of strength between different angles of loading in Fig. 17, this
can be contributed to large percentage of cracks being oriented
close to 30 deg and more or less constant factors between different
fracture types in Eq. (9) for hc � 30 deg.

From the comparison of the results for isotropic and anisotropic
domains, it is suggested that eliminating fracture strengths SS and
SC in a failure criterion and maintaining only SN is a more sensible
choice for anisotropic domains. Under such conditions, the other
strengths can be approximated as constant factors of uniaxial ten-
sile strength field, without introducing much error. This greatly

simplifies several aspects of the proposed multiscale approach in
this manuscript, as we consider a single inhomogeneous strength
field for SN in Sec. 3.4.

In this section, we studied how fracture strengths vary by
changing the spatial location, angle of loading, and type of
strength. Covariance functions can be used by the Karhunen–
Lo�eve [64,65] or other similar methods to generate a large number
of random field realizations that are consistent with fields homog-
enized with a given LSVE. This approach in general is faster than
generating domains with an actual microstructure (i.e., the micro-
cracks here) and using the SVEs to homogenize them. Thus,
understanding the form of covariance function is of great impor-
tance. For the two microcrack distributions considered and for
LSVE¼ 1, the corresponding random fields are stationary in space.
In addition, the spatial covariance function is spherical and tends
to zero at a length scale below LSVE. The angular covariance func-
tion is stationary in angle for the isotropic domain and tends to
zero for loading angle differences greater than about 20 deg.

3.4 Dynamic Fracture Analysis. For fragmentation and
other problems that lack macroscopic stress concentration points,
maintaining material inhomogeneity is of great importance. We
study the fragmentation of a 32� 32 mm2 square rock domain
(same VE size used in Ref. [33]) under bi-axial tensile loading
condition. We use the inhomogeneous fracture strength fields for
LSVE¼ 1 for both isotropic and anisotropic domains, to maintain
the highest level of material inhomogeneity with the SVE sizes
considered. Since n¼ 5, cf. Sec. 2.1, any of the fracture strength
fields for SN(h) is represented by a 160 � 160 resolution material
property mesh. The value at each grid point is equal to SN(h)
obtained for the SVE centered at that point. Using a step size of
2 deg for h, 90 strength fields SN(h) are computed and stored for
macroscopic fracture analysis for each of the two rock domains.

Fig. 13 The measure of anisotropy, AN, for the anisotropic domain for different SVE sizes: (a)
LSVE 5 1 mm, (b) LSVE 5 2 mm, (c) LSVE 5 4 mm, and (d) LSVE 5 8 mm

Table 1 Selected SVE location, measures of anisotropy AN,
and mean strengths �sN

Points X Y AN,iso AN,aniso
�SN;iso

�SN;aniso

P1 –5.4 –13.8 0.093 0.401 81.1 114.4
P2 0.6 –1.4 0.457 0.964 37.5 93.5
P3 11.6 14.4 0.701 0.539 54.6 109.2
P4 –14.2 9.4 0.800 0.406 65.7 96.0
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Four of such meshes for isotropic and anisotropic domains are
shown in Figs. 6 and 11, respectively.

Initial and boundary conditions were applied consistent with a
uniform, isotropic tensile field that ramps linearly in time. The
components of the displacement field (U, V) are

UðX;Y; tÞ ¼ _eXt; VðX;Y; tÞ ¼ _eYt (15)

where (X, Y) and t are space and time coordinates, and _e is the
specified normal strain rates for both X and Y directions. Dirichlet
boundary conditions, i.e., a prescribed velocity field, is applied on
the entire boundary of the domain at all times. This resembles a
displacement control loading in dynamics and is more appropriate
than Neumann boundary condition for capturing the unloading
part of macroscopic strain versus stress response. Plane strain
conditions were specified with material properties taken from
Ref. [33]; that is, Young’s Modulus E ¼ 65 GPa, mass density
q¼ 2700 kg/m3, and Poisson’s ratio �¼ 0.3. The macroscopic
fracture simulations are performed by the aSDG method,
described in Sec. 2.7.

Both rock domains are simulated up to time t ¼ 12 ls. A strain
rate of _e ¼ 20=s is used to gradually load them. A spatially uni-
form and temporally increasing stress response persists until the
stress value reaches the minimum tensile strength of SN(X, Y, h)
over all spatial points and angles of loading, at location (Xm, Ym)
and for the angle of loading hm. At this instant, a crack is
nucleated at (Xm, Ym) and propagated along the direction hm. The
uniform stress field no longer persists past this instant, and more
cracks are nucleated and/or propagated until the square domain
completely fails.

We use homogenization boundary integrals [66] to obtain mac-
roscopic strain E and stress R tensors for each time t � [0, 12 ls].
Figure 18 compares the response of the two rock domains in terms
of their macroscopic strain versus stress response. The maximum
attainable stresses of the isotropic domain are max
(RXX)¼ 19.16 MPa and max (RYY)¼ 18.39 MPa. The correspond-
ing values for the anisotropic rock domain are max
(RXX)¼ 21.82 MPa and max (RY Y)¼ 21.94 MPa. Thus, the aniso-
tropic rock domain has a higher macroscopic strength under the
bi-axial tensile loading condition. This is due to the fact that over
the majority of angles, the fracture strength SN is much higher
than the isotropic domain other than a small angular range about
the angle of weakest strength. At time t ¼ 12 ls, the isotropic
domain has reached failure, but the anisotropic domain has not yet
reached failure.

Another interesting feature is that for the anisotropic rock, aside
from a small region early in macroscopic failure initiation stages,
RYY is lower than RXX over a zone where significant macroscopic
softening and unloading occurs in Fig. 18(b). Eventually, how-
ever, both stresses take almost the same values once they tend to
zero past this zone. Given that for the anisotropic domain, the
lowest strengths in the homogenized SN(X, Y, h) field are for
angles h � (25, 35) deg; overall, the domain is expected to have a
lower strength in Y, compared to X, direction. For the single real-
ization of the microcracks with anisotropic angle statistics in
Fig. 4(b), this happens for the range of strains discussed previ-
ously. We have repeated the fracture analysis of the same two
rock domains under different loading rates _e. While the results are
not presented for brevity, the same difference between RXX and
RYY for the anisotropic domain is observed for other loading rates.
In addition, maximum macroscopic stresses of the anisotropic

Fig. 14 SN(h) for four LSVE 5 1 mm SVEs with different meas-
ures of anisotropy AN, h 5 [0, 180] deg: (a) isotropic domain and
(b) anisotropic domain

Fig. 15 Spatial covariance function for strength field SN,
covXN : (a) isotropic domain and (b) anisotropic domain
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domain consistency remain higher than those of the isotropic
domain.

The strain and kinetic energy densities of the two solutions are
shown in Fig. 19 for t ¼ 12 ls. The strain energy density is
mapped to the color field, where light to dark color indicates a
range of zero to 1000 J/m3. The kinetic energy is mapped to the
height field such that regions of high kinetic energy appear closer.
Because the anisotropic domain has not reached failure, higher
strain levels are shown in the domain. The isotropic domain shows
cracks growing in several directions; however, the anisotropic
domain shows the angularly biased crack field where, as expected,
the majority of cracks are aligned close to 25–35 deg. The major-
ity of cracks with other orientations connect three to four main
cracks that are aligned with the weakest plane of the rock.

Figure 20 depicts the front meshes at the time of failure t ¼ 12
ls for the two rock domains. These meshes show the adaptivity of
the aSDG method for propagating cracks and controlling solution
errors. In addition, the level of interfacial damage parameter is
indicated by blue (zero damage) to red (full damage) colors on
crack surfaces. For both cases, the solution starts with a spatial tri-
angulation containing no cracks. The effect of initial microcracks
in the domain is modeled by anisotropic and inhomogeneous
mesoscopic fields of SN as those shown in Figs. 6 and 11. As the
cracks are nucleated with specified propagation directions, the
front mesh is continuously adapted to align element boundaries
with the specified directions. In addition, adaptive operations
ensure that the numerical errors in the bulk and on fracture surfa-
ces are below the user-specified tolerances. This is reflected in
finer elements closer to the crack tips in the figure. As a result of
these adaptive operations, the front meshes in Figs. 20(a) and
20(b) contain 23,891 and 26,615 triangles, respectively, compared
to only 803 triangles in the initial front mesh at t ¼ 0.

4 Conclusion

An upscaling approach was proposed in which an angle-
dependent inhomogeneous fracture strength field was

Fig. 16 Angular covariance function for strength field SN,
covhN: (a) isotropic domain and (b) anisotropic domain Fig. 17 Angular correlation function for strength field SN: (a)

isotropic domain and (b) anisotropic domain

Table 2 Pearson correlation coefficients for angle-
independent strength fields for the isotropic domain

SNH SNH
�SN

�SS
�SC m (SN) m (SS) m (SC)

SNH 1 0.917 0.939 0.847 1 1 1
�SN 0.917 1 0.993 0.950 0.917 0.917 0.917
�SS 0.939 0.993 1 0.950 0.939 0.939 0.939
�SC 0.847 0.950 0.950 1 0.847 0.847 0.847

m (SN) 1 0.917 0.939 0.847 1 1 1
m (SS) 1 0.917 0.939 0.847 1 1 1
m (SC) 1 0.917 0.939 0.847 1 1 1

Table 3 Pearson correlation coefficients for angle-
independent strength fields for the anisotropic domain

SNH SNH
�SN

�SS
�SC m (SN) m (SS) m (SC)

SNH 1 0.995 0.993 0.967 1 1 1
�SN 0.995 1 0.997 0.979 0.995 0.995 0.995
�SS 0.993 0.997 1 0.990 0.993 0.993 0.993
�SC 0.967 0.979 0.990 1 0.967 0.967 0.967

m (SN) 1 0.995 0.993 0.967 1 1 1
m (SS) 1 0.995 0.993 0.967 1 1 1
m (SC) 1 0.995 0.993 0.967 1 1 1
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homogenized from the distribution of cracks at the microscale.
The mesoscopic strength field is in turn used for fracture simula-
tions at the macroscale. The computational cost is deemed to be
lower compared to direct numerical simulation of the material
with explicit representation of its microstructure. The microcrack
statistics of a real material, Yuen-Long marble, as described in
Ref. [33], was used to generate cracks at the microscale. The pro-
posed multiscale approach can be used to systematically propa-
gate the statistics and randomness of a material at the microscale
to uncertainties in its macroscopic failure response.

We use a mixed mode crack propagation criterion, while taking
into account the frictional effect for mode II fracture, to derive
angle-dependent uniaxial tensile, uniaxial compressive, and shear
strengths for arbitrary orientations of the loading and a single
crack. These strengths are used to derive corresponding angle-
dependent strengths for circular SVEs, containing potentially mul-
tiple cracks. A 2D macroscopic domain is then traversed with
overlapping SVEs in X and Y directions. The homogenized frac-
ture strengths of each SVE are assigned to its center point. Two
rock domains with isotropic and anisotropic distribution of micro-
cracks were homogenized with different SVE sizes. Macroscopic
fracture responses were consistent with the underlying statistics of
microcracks. For example, for the anisotropic domain, the major-
ity of macroscopic cracks were aligned with the weakest direc-
tions of the homogenized mesoscopic strength field.

The pointwise and two-point statistics of the random fields
were analyzed. As the SVE size increased, the homogenized field
became smoother and higher frequency local variations were lost.
This corresponded to lower mean and variation of the homoge-
nized strengths for higher SVE sizes. The spatial covariance func-
tion of the strength field was shown to only depend on the
distance of two points. The angular covariance function of the

isotropic rock should be a function of relative angular distance of
two points. In contrast, this function was shown to be much more
complex for the anisotropic rock domain.

The effectiveness of this method for homogenization and frac-
ture simulation was demonstrated; however, there are several
areas of improvement for future research. First, in this study only
fracture properties were assumed to be anisotropic. For more real-
istic modeling, the elasticity tensor should also be considered
inhomogeneous and anisotropic [67], and be homogenized by
SVEs. Second, we only presented a single realization of a micro-
cracked domain and its corresponding mesoscopic fracture
strength field (for a given SVE size). Many realizations of the
microcracked domain (or mesoscopic fracture strength fields)
should be generated and analyzed to provide a statistical represen-
tation of macroscopic fracture response. Third, the one-point and

Fig. 18 Macroscopic tensile strain–stress response in x and y
directions: (a) isotropic domain and (b) anisotropic domain

Fig. 19 Strain and kinetic energy densities at t 5 12 ls: (a) Iso-
tropic domain and (b) anisotropic domain
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two-point statistics of the mesoscopic random fields, studied here,
can be used to circumvent the microscale domain realization and
analysis, and directly generate statistically consistent random
fields at the mesoscale. Fourth, finite element analysis can be used
at the microscale to accurately model microcrack interaction (not
modeled in this study) and to calibrate computationally more effi-
cient stochastic bulk damage models [68].
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