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A B S T R A C T

To capture the randomness and inhomogeneity of rock at microscale, a statistical volume element (SVE) aver-
aging approach is proposed. The microcrack statistics of a real-world Yuen-Long marble sample is used to realize
2D microcracked domains. The size effect, i.e. the decrease of the mean and variation of homogenized strength
field by increasing SVE size, is analyzed. Increasing the crack density is shown to have a similar effect. While
smaller SVEs maintain a greater level of inhomogeneity and are preferred for fracture analysis, it is shown that
low density of microcracks pose a lower limit on the SVE size. Beside the actual power-law distribution of
microcrack length, by varying the Weibull model shape parameter m other domains are created with different
microcrack distribution shapes. Macroscopic fracture simulations, by the asynchronous Spacetime Discontinuous
Galerkin (aSDG) method, study the effect of m for a uniaxial tensile problem. By increasing m from 0.5 to 4, the
length distribution of microcracks become more uniform; this corresponds to a more uniform and stronger
mesoscopic strength field, which results to about 3 and 6 times increase to macroscopic tensile strength and
toughness, respectively. However, the more uniform length distribution of microcracks is shown to reduce rock
brittleness.

1. Introduction

Understanding the behavior of rock, including how it is materially
constituted, reacts to loading, and fails is vital for critical economic
activities such as mining, drilling, tunneling, and construction. While
these activities may consider the material in the macro-scale, the be-
havior of quasi-brittle materials such as rock is heavily influenced by
heterogeneity at the meso- and micro-scale [1–3]. Because brittle ma-
terials lack energy dissipative mechanisms, microcrack stress con-
centrations are not balanced as in more ductile materials and directly
influence the material’s peek and post-instability response [4]. The
distribution of microcracks and voids change the overall response of the
system to an applied stress. These heterogeneities result in crack pattern
variability between multiple samples for similar loading [5] and un-
certainty in the ultimate fracture strength of the material [6,4]. The size
effect, where the sample-to-sample mean and variation of fracture
strength of a given material decreases with increasing structure size
[7,3], is a well-known phenomenon for quasi-brittle materials. The size
effect for these materials is contributed to the distribution of micro-
scale defects and insignificance of plasticity or other mechanisms that
could otherwise absorb large energies and significantly redistribute the
stress field [2].

Simulating the effect of these heterogeneities can be performed ei-
ther explicitly or implicitly [8]. Explicit models directly incorporate
defects greater than some minimum size into the analysis. For example,
as in [9–12] the continuum is simplified as a network of bars or beams
with random properties. Peridynamic [13], discrete element methods
[14,15], and discrete particle methods [16] are other examples that can
model continuum as a collection of (possibly deformable) particles.
Another example is the explicit representation of (micro) cracks in a
computational framework. The explicit representation of defects in
general improves the fidelity of computational model. For example,
explicit representation of microcracks is important in hydraulic frac-
turing applications [17]. Moreover, explicit models can even be used to
explain highly complex phenomena such as solid- to fluid-like transition
in sand dunes [18].

Implementing explicit models is computationally costly; so there is
great difficulty in employing these models for anything other than small
space and time scales. Implicitmodels represent the microstructure in an
averaged or homogenized sense, and have been used to qualitatively
explain the size effect. The implicit representation of microstructures
makes implicit methods computationally more affordable than explicit
ones. A popular implicit model is Weibull’s weakest link model [19,20].
This model has been used to show that realistic fracture patterns can be
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captured for problems that lack macroscopic stress concentration
points, such as fragmentation [21] and dynamic compressive loading
[22] problems. The main issue with these models is that while they are
able to capture the general phenomenon, they lack a direct physical
connection to the material microstructure. Therefore, an approach is
necessary that can link the microstructural distribution of defects to the
macro-scale, without the computational costs required of explicit
models.

Homogenization methods address this concern by averaging the
effect of the microstructure in a volume element (VE). In continuum
mechanics, a Representative Volume Element (RVE) acts as a mathema-
tical point of a continuum field approximating the true material mi-
crostructure. The equivalent term Representative Elementary Volume
(REV) is used in rock mechanics. According to [23], RVEs are well-
defined for a unit cell in a periodic microstructure and a statistically
representative volume containing very large number of microscale
elements. In this manuscript, our focus is on the second type of VEs. For
a macroscopically homogeneous material with ergodic properties the
standard deviation of the homogenized properties follows a power law
[24] or model [25,26] versus the VE size, in that, the variation of
homogenized properties tend to zero as the VE size tends to infinity.
The RVE size for a given material property of a composite is chosen
such that either this standard deviation, or the error in estimating the
mean of the homogenized property, falls below a user-specified toler-
ance for a given number of VE realizations; cf. [27,26,28,29] on more
detailed discussion on the RVE and the determination of its size.

For a given material property, if the aforementioned condition for
the RVE size is not satisfied, the VEs are known as Statistical Volume
Elements (SVEs). These SVEs are smaller than the corresponding RVE,
and simply speaking a large variation is observed in properties homo-
genized by SVEs. One advantage of SVEs is that they can model spatial
and sample-to-sample variation of material properties by using small
enough VEs for homogenization. The selected SVE observation window
[30,31], type of boundary conditions [32], and clustering of micro-
structures [33] all affect the statistics of the homogenized properties.

While RVEs have been used in many studies to homogenize and
calibrate various fracture models [34–38], the use of SVEs provides
several advantages for fracture analysis; by maintaining material in-
homogeneity in fracture properties, fracture can initiate from material
weak points, as opposed to unrealistic fracture initiation from all points
under a spatially uniform stress field as shown in [39]. Moreover, by
preserving sample-to-sample variations, variations in fracture pattern,
ultimate load, and fracture strengths for different samples can be cap-
tured when SVEs are used. Finally, it is noted that by homogenizing the
effect of microstructure into heterogeneous material property fields, the
use of SVEs provides a significant advantage in computational cost over
explicit methods.

We have previously used SVEs for fracture analysis of quasi-brittle
materials with microcracks in [39–41]. However, the microcrack sta-
tistics were not derived from any known material and instead were
simply used to detail the overall analysis process. In addition, no crack
interaction was considered. We address these shortcomings in this
manuscript; first, a data set [42,43] which contained the microcrack
distribution statistics for a set of six Yuen-Long marble samples was
identified for this analysis. As in the paper by Wong et al., a power law
distribution was used to match the microcrack length distribution in the
simulated Yuen-Long marble RVE domain. Second, a sliding wing crack
model was used [44] to take into account the effect of crack interaction
caused by crack fields with differing densities and crack distributions.
These efforts improve the accuracy of microcrack statistics and the
homogenized mesoscopic fracture strength fields.

The distribution of microcrack length can have a significant effect
on both homogenized mesoscopic strength fields and macroscopic
fracture response. To better analyze such effect, we create synthetic
rock samples where crack length follows a Weibull distribution, while
the mean of crack length matches that of the original Yuen-Long marble

sample data. The Weibull model is used to create very different crack
length distributions by simply changing the Weibull shape parameter.
Finally, we study the effect of crack density and SVE size on the sta-
tistics of homogenized fracture strength fields.

Relating the statistics of microcracks to macroscopic fracture re-
sponse is the second contribution of this manuscript, which is done by
simulating domains with SVE-homogenized fracture strength fields.
These fields are simulated using an asynchronous Spacetime
Discontinuous Galerkin method (aSDG) [45,46]. The proposed multiscale
approach based on the use of SVEs greatly reduces computational cost
relative to the direct numerical simulation of rock. At the macroscale,
we derive macroscopic strain versus stress responses for a uniaxial
tensile problem. The macroscopic simulations are used to demonstrate
the effect of initial crack distribution on macroscopic rock strength,
toughness, brittleness, and fracture pattern. One general observation is
that domains with more uniform crack length distribution can sustain a
larger macroscopic stress level, but have a more brittle response.

The remainder of manuscript is structured as follows. In Section 2
the SVE analysis process is described as well as the relevant background
material from [43]. Results for the Yuen-Long material crack distribu-
tion and differing Weibull crack length model distributions are pro-
vided in Section 3. In this section, microcrack statistics are translated to
an inhomogeneous mesoscopic fracture strength field, which is subse-
quently used in Section 4 for dynamic macroscopic fracture analysis.
Final discussion of the results and future work are discussed in Section
5.

2. Materials and methods

Fig. 1 depicts an outline for this section. In [43], the authors con-
sider a 32 mm by 32 mm square domain of Yuen-Long marble to be
representative. That is, the size of domain is large enough to contain
sufficient number of microcracks and is sufficiently larger than the size
of microcracks measured in their experiments. This ensures that prop-
erties homogenized on this size demonstrate very small variations from
sample to sample. Herein, we refer to a square domain of this size as a
Representative Volume Element (RVE). In Section 2.1 we describe the
process in which we populate microcrack with specific length and angle
distributions in the macroscopic domain.

Instead of directly deriving material properties such as fracture
strength for RVEs, we are interested in assigning such properties for
Statistical Volume Elements (SVEs). The use of SVEs ensures that derived
properties are no longer uniform for a macroscopically homogeneous
rock. Moreover, each SVE maintains sample-to-sample variation for a
given property at the same spatial location between different RVEs. As
shown in Fig. 1(a), we use circular SVEs of size LSVE to traverse the RVE
with spacing S. Fig. 1(b) shows a zoomed view of an SVE containing
multiple microcracks. The formation of SVEs within the RVE and the
characterization of a unique mesoscopic compressive fracture strength
per SVE are described in Sections 2.2 and 2.3, respectively. Once the
RVE is traversed with SVEs, at the center of each SVE a unique meso-
scopic strength value is assigned. A contour plot generated from grid
values of these strengths is shown in Fig. 1(c). Finally, any of such in-
homogeneous mesoscopic fields can be used as an input fracture
strength field for a macroscopic fracture simulation of an RVE. Fig. 1(d)
shows a sample fracture pattern obtained by the aSDG method.

2.1. Distribution of microcracks

While the actual microcrack distribution of the material micro-
structure for each Yuen-Long marble sample is not given in [43], the
provided material properties and microcrack statistics allows us to
generate random realizations of the material that accurately represent
the material behavior. These realizations contain a field of microcracks
with realistic crack length distributions, crack angle distributions, and
the correct microcrack density in the domain. The microcrack statistics
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and material Poisson’s ratio and modulus of elasticity were taken from
the material sample designated S19 in [43]. The spatial distribution of
the individual cracks remains random for each realization. Therefore,
this section will describe the statistical distributions used to create the
randomly generated domains. While the information contained herein
is not original, this section acts as a review of the information required
to generate the random domains.

We first discuss the distribution of the length of microcracks. Crack
length is indirectly specified by its half length a, as is common in the
field of fracture mechanics. From [43] for the given marble, a is shown
to follow a power law distribution. Because a power law distribution
will blow up with decreasing crack size, a minimum half crack length ′a
is assigned. Therefore, the cumulative probability for half cracks longer
than ′a for an elemental volume V0 is defined as,

= ⎛
⎝

⎞
⎠

∗
g a

q
a

( )
z

(1)

where ∗q and Cauchy distribution exponent >z 1 are the parameters of
the power distribution, subject to the condition,

∫ =
′

∞
V g a da( ) 1.

a0 (2)

To ensure this equality, the lower integration limit, ′a is defined by,

′ = ⎡
⎣ −

⎤
⎦

∗ −
a

q V
z

( )
1

z z0
1

1

(3)

This half crack length distribution was used to create new random
crack field realizations with the provided marble properties that are
given in [43] and described in Section 3. The angular distribution of the
cracks was assumed to follow a uniform distribution, corresponding to a
macroscopically isotropic material. The spatial location of cracks is also
assumed to follow a uniform distribution, corresponding to a macro-
scopically homogeneous material. The last descriptor used for realizing

microcracked domains is crack density ε0, defined as the nondimen-
sional sum of the squares of individual crack lengths per unit surface
area. To generate a statistically consistent domain such as that shown in
Fig. 1(a), individual cracks are created and placed in the domain by a
pick-and-place algorithm in which for an individual crack its half
length, angle, and spatial location are sampled from their corre-
sponding distribution functions. Individual cracks are placed in the
domain until the target crack density is reached.

To investigate how the distribution of half crack length affects
fracture response, several additional domains were created with similar
material properties as the Yuen-Long marble samples and maintaining
the same mean half crack length as that of the power law distribution in
[43]. However, rather than using a power law distribution, a Weibull
distribution was used due to the ease in changing the shape of the
distribution utilizing the shape parameter m. The Weibull cumulative
distribution function for a is defined as,

= − − ⎡
⎣

−
⎤
⎦g a e( ) 1 r a γ

η
m

(4)

As stated previously, the power m is the shape parameter, which
controls the shape of the distribution. The Weibull model parameters
are calibrated for an elemental volume V0. The distribution for another
elemental volume V is adjusted through the ratio ≔r V V/ 0. Moreover, η
is the scale parameter and γ , similar to ′a , controls the minimum half
crack length of the distribution. To change the shape of the distribution,
several different m values were selected for analysis. To maintain the
minimum half crack length, the γ value was set equal to ′a . Therefore,
the only variable which was changed between the given distributions to
retain the mean crack length was η.

2.2. SVE characterization

The most important aspect affecting material properties

Fig. 1. A multi-scale model for fracture analysis of microcracked rock.
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homogenized or averaged by SVEs is the size of SVE, LSVE. As LSVE in-
creases toward the RVE size and beyond, the material properties be-
come more uniform; for a macroscopically homogeneous material the
values obtained from all SVEs in fact tend to a unique value. The size of
SVEs should be chosen considerably smaller than RVE size limit. On the
other hand, the SVE size must be sufficiently larger than the micro-
structural details of the material and ideally contain a sufficient number
of them in the SVE to make it representative of the response of the
material. For the problem considered herein, microstructure is char-
acterized by microcracks whose length distribution was described in
Section 2.1. To ensure SVEs are larger than the typical microstructure
size, we require the relative size of SVE by mean crack length, defined
by �=β L a/ (2 )SVE , be larger than one. Moreover, to ensure that SVEs
are representative, ideally we want to have majority of SVEs to contain
some microcracks. For the SVEs which do not contain any cracks, a
maximum fracture strength corresponding to minimum allowable crack
length of the distributions discussed in Section 2.1 is assigned. As will
be shown in Section 3.4, the condition of SVEs containing microcracks
further constrains the lower limit of LSVE at low crack densities. In
addition, it is shown that the mean and standard deviation of fracture
strength decrease as LSVE increases.

The second consideration is the shape of an SVE. In 2D, square and
rectangle are typical shapes for SVEs. However, herein we consider
circular SVEs for two reasons. First, in [47] it is shown that the square
SVEs artificially make the homogenized material anisotropic (even if it
is isotropic at macroscale), in that homogenized properties have a
nonphysical bias (minimum or maximum value) along 0/90 or 45/135
degrees. While unlike [40,41], we do not consider angular dependency
of the fracture strength, the circular shape still eliminates artificially
higher or lower strengths along these angles to be incorporated in the
fracture strength of SVEs. Second, the circular shape of an SVE sim-
plifies the algorithm to determine the intersection of a crack with an
SVE, as it is needed to determine its strength in Section 2.3.

We use circular SVEs in the context of moving window [31,48,49]
method, wherein overlapping windows (volume elements) smaller than
RVE scale traverse the domain in the context of Generalized Method of
Cells (GMC). The square SVEs in [48,49] and circular ones in present
study are overlapping and are centered at the points of a fine structured
grid. As shown in Fig. 1(a), the spacing of SVEs, i.e. the center to center
distance of consecutive SVEs in horizontal and vertical directions, is
denoted by S. For any given SVE size, we use the spacing =S L n/SVE , for
a spacing factor n equal or greater than 5. In Section 3.1.1, we perform
a review of several SVE spacing values in order to determine a rea-
sonable value for n. After this review, it was determined that by using
the spacing n=10, the characterized inhomogeneous fracture strength
field will be of high spatial resolution while retaining computational

efficiency; cf. Fig. 1(c). For the 32 mm by 32 mm RVE in Fig. 1(a), this
corresponds to a +S32/ 1 by +S32/ 1 square grid; at each grid point
the averaged fracture strength, cf. Section 2.3, of an SVE centered at
that point is assigned. To ensure the SVEs close to the boundary of the
RVE (for example SVE A in Fig. 1(a)) entirely cover the microcracked
rock, we need to choose a volume element larger than the RVE size. In
this study, a 80 mm by 80 mm volume element is chosen for this volume
element.

2.3. Mesoscopic fracture strength model

We note that in the present study only fracture strength is con-
sidered as an inhomogeneous/ random field at the mesoscale, and
elastic properties are deemed to be homogeneous. This is consistent
with the approach in [42,43]. In addition, fracture strength has been
the field that is considered inhomogeneous in majority of similar stu-
dies, see for example [50–55].

Assigning a fracture strength to an SVE involves two steps.The first
step is the determination of uniaxial compressive fracture strength sc for
a single crack contained in a domain with a specific crack density. To
ensure consistent strength values with the data set produced by Wong
et al., [42,43], the same sliding wing crack strength model for uniaxial
compressive strength is utilized in this manuscript. This section sum-
marizes the fracture strength model given in [43] used to calculate the
fracture strengths in this manuscript.

The wing crack model relates the compressive failure stress to the
critical stress intensity factor, KIC. It considers the tensile stress con-
centration at the tips of the inclined preexisting cracks of length a2 . The
applied stresses induce a shear traction on the plane of the crack, which
if sufficiently high to overcome the frictional resistance along the closed
crack, results in stress concentrations that may induce wing cracks to
propagate, as shown in Fig. 2. This propagation is characterized by the
stress intensity factor KI at the point of wing crack initiation which is a
function of the friction coefficient μ, the angle ψ between the crack and
maximum compressive principal stress σI , and the applied stress field.
While the fracture strength equations for the wing-crack model can be

Fig. 2. Sliding wing crack model with orientation of wings relative to principal
compressive stresses σ1 and σ3. Fig. 3. SVE containing cracks for fracture analysis (Red lines are considered

crack segments external to SVE, Blue lines are considered crack segments in-
ternal to SVE). (For interpretation of the references to color in this figure le-
gend, the reader is referred to the web version of this article.)

Table 1
Sample S19 material properties taken from [43].

ρ (kg/m )3 ν E (GPa) a2 (mm) ′a (mm) ε0 z ∗q V0

2727 0.25 34.65 0.141 0.0075 0.243 2.017 0.007
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found in [43], we have reproduced the equations (Eqs. (5)–(7)) here for
clarity.

When the loading is increased, the stress intensity factor KI ap-
proaches the critical value KIC at which point the wing crack grows out
of the initial plane along orientations sub-parallel to σI . As the stress
increases, more cracks distributed throughout the given sample will
grow in this form. These cracks will eventually coalesce. One benefit of
the wing crack model in [43] is that this complex crack interaction is
captured by analytic approximations in the model. So, the given com-
pressive strength is given by,

=s K
y πa

,IC
c

(5)

where y denotes crack interaction in an averaged sense. In [44] the
value of y is derived for a structured grid of parallel wing cracks and
was used in [43] to approximately model their interaction for a non-

structured network of wing cracks (variable size, angle, and spacing).
The value of y is obtained from,

=
+ −
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In (6), μ is the friction coefficient, ψ is the angle between the sliding
crack and the maximum principal stress, lcr is the critical normalized
crack length, and ε0 is the crack density. C3 will be defined as part of the
solution for the normalized critical length lcr , which is a positive root of
the implicit equation,

Fig. 4. Representative generated microcrack domains for various m Weibull crack length distributions for ε0 =0.243.
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where = = + − =C ε π C μ μ C2 / , 1 , 0.231 0 2
2

3 , and =C 0.5774 . Al-
though the angle ψ depends on the angle of loading relative to a crack
direction, following the work of Wong in [42], an optimal angle of

= −ψ μ(1/2)tan (1/ )1 is chosen.
The second step is to determine the compressive strength of an SVE

from the strengths of individual cracks contained in it. Within each
circular SVE, the microcracks which are contained in or intersect with it
are found. These microcracks are shown in Fig. 3. For each of these
cracks sc is obtained from (5). For cracks which are partially contained
within the SVE, only the crack length a2 contained within the SVE is
processed. The minimum fracture strength is then calculated. As men-
tioned in Section 2.2, the fracture strength of each SVE is assigned to its
centroid to form a uniform grid of mesoscopic fracture strengths as
shown in Fig. 1(c).

When an SVE contains no microcracks, a maximum fracture
strength based on the minimum half crack length ′a is assigned to the
SVE; cf. Section 2.1. As will be observed in Section 3, in general this
maximum strength is assigned to only a very few SVEs, except when a
combination of low crack density and small SVE size is used. The SVEs
with the assigned maximum strength are not deemed to greatly influ-
ence fracture response, as fracture is mostly affected by regions with
lower strength. However, to better represent the strength of these SVEs
one could consider failure in the bulk and the effect of microcracks,
voids, and defects at scales smaller than those considered herein.

2.4. aSDG method and fracture model

The h-adaptive asynchronous Spacetime Discontinuous Galerkin
(aSDG) method, formulated for elastodynamic problem in [45,46], is
utilized for the dynamic fracture simulations. The aSDG method di-
rectly discretizes spacetime using nonuniform grids that satisfy a special
causality constraint resulting in unique properties, such as a local and
asynchronous solution scheme, arbitrarily high and local temporal
order of accuracy, and linear solution scaling versus number of ele-
ments.

On fracture surfaces often a cohesive model [56,57] is employed to
represent the process of debonding. In lieu of such models, we employ
an interfacial contact and damage model [58], wherein internal

parameters including a damage parameter D model the processes of
debonding and contact–stick/ contact-slip mode transitions. On an ar-
bitrary oriented fracture surface, an effective stress scalar value drives
damage evolution. The effective stress combines positive normal (i.e.
tensile) and shear traction components and is compared against an ef-
fective fracture strength ̃s at a given point. The strength field ̃s can be
inhomogeneous; in Section 4, it will be discussed how it is derived from
a mesoscopic uniaxial compressive strength field, such as that shown in
Fig. 1(c).

Fig. 1(d) shows a sample front mesh (spatial mesh) for a dynamic
fracture simulation. For each of the vertices of the front mesh, we check
if the effective stress exceeds ̃s for any potential angle of crack pro-
pagation, ∈θ π[0, 2 ]. If so, a crack is nucleated and propagated in that
direction. The same holds for the tips of already propagated cracks.
Advanced mesh adaptive operations in spacetime are employed to align
inter-element boundaries with the proposed crack direction. To further
enhance the accuracy and efficiency of the method, an h-adaptive
scheme adjusts element sizes in spacetime to satisfy error indicators in
the bulk and on fracture interfaces for controlling the energy dissipation
and satisfaction of fracture constitutive relations [59]. The combination
of these two sets of mesh adaptive operations and aSDG properties
enables accurate representation of very complex fracture patterns for
dynamic brittle fracture, as shown in Fig. 1(d). For a review of these
mesh adaptive operations for fracture analysis, we refer the readers to
[21].

The aforementioned adaptive operations accommodate crack pro-
pagation in arbitrary directions, thus providing the same or higher
flexibility than other mesh adaptive finite element methods [60–63],
such as the eXtended Finite Element Methods (XFEMs) [64–66] and
Generalized Finite Element Methods (GFEMs) [67,68], in accurate nu-
merical modeling of complex crack paths. However, there are several
advantages to directly aligning element boundaries with crack direc-
tion, rather than having cracks go through elements as in XFEMs and
GFEMs. Since the elements containing cracks and crack tips require
enrichment functions, the finding of such functions can be challenging
for XFEMs and GFEMs. For example, the majority of these methods are
based on the Linear Elastic Fracture Mechanics (LEFM) theory and using
nonlinear models such as cohesive and interfacial damage models (used
in this manuscript) is cumbersome, at least in elements containing crack
tips. Moreover, geometric complexities such as crack branching, mi-
crocracking, and crack intersection are very common in dynamic frac-
ture. Again, specific enrichments should be used for such fracture pat-
terns with XFEMs and GFEMs. In contrast, any fracture model can be
used between element boundaries and the aSDG mesh adaptive op-
erations can accommodate aforementioned dynamic fracture patterns.
However, as discussed in [69], extension of mesh adaptive methods to
3D for aSDG would be more difficult than XFEMs and GFEMs. Finally,
we note that meshless methods such as [70] can be appropriate choices
for modeling complex rock fracture problems in 2D and 3D.

3. Results for mesoscopic fracture strength homogenization

In this section, the numerical results corresponding to the two scale
fracture analysis scheme in Fig. 1 are presented. First, the statistics and
initial results from the Yuen-Long marble sample with a Power-Law
microcrack distribution and the various generated Weibull distributions
with four different shape parameters will be presented in Sections 3.1
and 3.2. Then, the generated Weibull distributions will be analyzed
with a specific focus on SVE size in Section 3.3 and a focus on crack
density in Section 3.4. Finally, the dynamic fracture analysis performed
utilizing the aSDG method are presented in Section 4. The use of the
aSDG method is motivated by employing an interfacial contact-damage
model and observing complex fracture intersection patterns, cf. Fig. 23;
otherwise, as discussed in Section 2.4, these aspects pose challenges to
methods such as XFEMs and GFEMs.

Fig. 5. Probability density function of crack length a2 for generated power
distribution and Weibull domains with ε0 =0.243.
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3.1. Power and Weibull generated domain results

Six Yuen-Long marble samples were analyzed in [43]. For this
analysis, the white marble sample statistics from the sample designated
S19 were used to generate the simulated Power-Law domain. Table 1
summarizes the material properties taken from [43]. These properties
include the material density ρ, Poisson’s ratio ν, Young’s modulus E,
mean crack length a2 , characteristic minimum length ′a , crack density
ε0, Cauchy distribution exponent z, and power law distribution para-
meter ∗q V0. The characteristic minimum length ′a is also used in the SVE
analysis process to calculate the maximum possible strength associated
with the minimum potential crack length.

Several Weibull distributions were created with the same mean
crack length a2 as the power law distribution domain for the Yuen-Long
marble sample, 0.141mm. The goal of this analysis is to show the effect
of changing the crack length probability density function (PDF) on the
fracture response of the material. Therefore, a wide variety of PDF
shapes were required to provide the desired impact on the fracture
response. Because the Weibull distribution PDF shape changes drasti-
cally with increasing shape parameter m, the m values of 1

2
, 1, 2, and 4

Fig. 6. The effect of SVE spacing n on mesoscopic strength contours sc for LSVE =1 and ε0 =0.243.

Fig. 7. Mesoscopic strength sc (MPa) PDF for various SVE spacing n (LSVE =1
and ε0 =0.243).
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were selected to change the shape of the distribution. The value of
m= 1

2
provides a PDF shape that is very close to the power-law dis-

tribution, while the shape becomes more bell-shaped and less skewed as
higher m values such as =m 4 are used. The minimum crack length a2

of 0.015mm was kept the same, while also reusing the same Young’s
modulus and Poisson’s ratio. Thus, the Weibull distribution parameter γ
was set equal to 0.015, while the r factor was set to unity, since the
volume element considered is equal to ×32 mm 32 mm square used in
[43] for V0 ( = =r V V/ 10 ). The scale parameter η was changed for each
m value to maintain the mean crack length of 0.141mm.

To perform a study of the effect of crack density on mesoscopic
fracture strength, three different crack densities ε0 were analyzed using
the Weibull distribution, 0.05, 0.243, and 0.75. Thus a total of 12 in-
dividual randomly generated microcracked domains similar to Fig. 1(a)
were generated for the Weibull model (four m values times three crack
densities). Finally, to show how small and large SVE sizes capture the
heterogeneities in the microcrack-filled domain, we determine macro-
scopic fracture strength of each of these 12 RVEs with different SVE
sizes of LSVE equal to 1, 2, 4, and 8mm. Thus, the analyses for the
Weibull model involves 12 distinct microcracked domain resulting in
48 mesoscopic fields for sc.

As shown in Fig. 1(a) microcracks are formed in a ×80 mm 80 mm
square domain centered at (0, 0). Four of the twelve generated Weibull
distribution microcrack domains analyzed with ε0 = 0.243 are shown
in Fig. 4. Fig. 5 shows the corresponding crack length probability
density functions. For the Weibull distributions, =m 1

2 most closely
approximates the power law distribution. As m increases, the shape
changes such that there are less smaller cracks and a more defined bell-
curve shape that results in a smaller standard deviation of length for the
distribution is formed.

Fig. 8. Mesoscopic strength sc (MPa) probability density function for power and
Weibull distribution domains with LSVE =1 and ε0 =0.243.

Fig. 9. Mesoscopic strength contour sc (MPa) for ε0 =0.243, LSVE =1, and Weibull shape parameters (a) m= 1
2
, (b) m=1, (c) m=2, and (d) m=4.
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Before performing the SVE analysis process, a reasonable value for
SVE spacing, equal to =n 10, is determined and detailed next in Section
3.1.1. Each domain is then analyzed using SVEs with the proper spa-
cing. For each SVE a uniaxial compressive strength was assigned based
on the minimum values of strength calculated for the microcracks in the
SVE. For SVEs with no microcrack a crack with minimum length of
0.015mm is considered; cf. the discussion at the end of Section 2.3. The
contour plot of strengths for the power law distribution with LSVE =1
and n = 10 is shown in Fig. 6(d). After calculating the strength field,
the strength field statistics are calculated to provide a better under-
standing of the general strength trends based on the three different
variables that were changed: distribution type and shape, LSVE size, and
crack density.

3.1.1. Effect of SVE spacing
As discussed in Section 2.2, in moving window method the RVE is

traversed with SVEs with spacing S. In order to determine a reasonable
value for this spacing, four values of =n 1, 2, 5, 10 were chosen. For
lower values of n, the analysis loses spatial resolution, and may not
even completely cover the RVE ( =n 1), leading to gaps that may miss
certain cracks entirely. For higher values of n, the statistical distribution
of calculated fracture strengths do not vary much with increasing spa-
tial resolution, resulting in a greater computational cost for no apparent
gain in creating the mesoscopic fracture strength field. This trend is
shown in Fig. 6 in the strength contour plots. The PDFs of strength for
various n, and for LSVE =1, in Fig. 7 show that there is not a large
difference in strength statistics even with the smallest =n 1 is used. The

mean strength of the field does change slightly with greater n values,
converging to the true value with a smaller spacing between each SVE.
For the rest of this manuscript, the value n = 10 was selected for cal-
culating the SVE spacing S = LSVE/n as the best trade-off between
spatial resolution and computational cost.

3.2. Distribution type and shape effect

The goal of this section is to demonstrate how the shape of the
distribution of cracks at the microscale affects the statistics of meso-
scopic strength field. This is facilitated by using different shape para-
meters for synthetic Weibull distributions; cf. Section 2.1. The data
shown in the strength probability density function, found in Fig. 8, is in
agreement with the expected trends after reviewing the crack length
probability density function in Fig. 5. Despite each domain containing
the same mean crack length, the actual mean strength does vary de-
pending on the crack length distribution shape. The variance that re-
sults is a function of the fact that the =m 1

2 and m=1 distributions
contain a larger standard deviation, with a larger number of both
smaller and larger cracks about the average than the more bell-curve
shape crack length distributions for m=2 and 4. This feature can also
be shown by reviewing the strength contours themselves for each of
various m shapes, as seen in Fig. 9.

Due to a feature of the SVE averaging process wherein any empty
SVEs are assigned a strength for a crack of a minimum length, the
probability density function that results from this analysis with the
smaller LSVE sizes inevitably appears bi-modal with two primary modes:

Fig. 10. Mesoscopic strength contour sc (MPa) SVE size effect comparison for ε0 =0.243, m= 1
2
, with (a) LSVE =1, (b) LSVE =2, (c) LSVE =4, and (d) LSVE =8.

J.M. Garrard and R. Abedi Computers and Geotechnics 117 (2020) 103229

9



one lower strength mode for the SVEs which contain cracks, and a
smaller, higher strength mode for the few SVEs without any crack in-
teraction. As would be expected, utilizing larger SVE sizes removes this
feature, as there are fewer SVEs and therefore a reduced number or no
SVEs without any cracks containing within the SVEs. This will be de-
tailed in the next section, Section 3.3. For the power law distribution,
the calculated mean strength for LSVE =1 is 72.67MPa, slightly higher
than the sample material strength of 55.85MPa reported in [43]. This is
a result of considering both the empty and non-empty SVEs. It is noted
that from the Weibull distribution results, those corresponding to =m 1

2
are the most realistic, as its microcrack length distribution in Fig. 5 (and
consequently sc in Fig. 8) are closest to that of the power distribution
for this Yuen-Long marble sample.

3.3. Weibull distribution comparison: SVE size effect

The size of the SVE, LSVE, strongly controls the statistics of the
heterogeneous fracture strength field averaged, such as its point-wise
Probability Distribution Function (PDF). Recall the parameter β, equal to

�L a/ (2 )SVE , from Section 2.2; as this parameter (i.e. the SVE size) tends
to infinity, the material inhomogeneity is lost for this macroscopically
homogeneous rock. To show this size effect, four different LSVE sizes
were used: 1, 2, 4, and 8mm.

Fig. 10 shows the strength contour plots of the same domain
( =m ε,1

2 0 =0.243) for each of the various SVE sizes. Each of the four
individual subplots utilize the same contour range, which allows for
objective comparison of strength fields across each plot. The smaller

Fig. 11. Strength probability density function and SVE size effect comparison for ε0 =0.243, with (a) m= 1
2
, (b) m=1, (c) m=2, and (d) m=4.

Fig. 12. Mean strength sc and standard deviation ς for ε0 =0.243.
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Fig. 13. Mesoscopic strength sc contours for =m 1
2 , (a) ε0 =0.05, (b) ε0 =0.243, and (c) ε0 =0.75.

Fig. 14. Strength probability density function comparison for various crack densities and Weibull distribution shape parameters for LSVE =1, (a) =m 1
2 , (b) m=1,

(c) m=2, and (d) m=4.

Fig. 15. Distinct discrete grids for material properties and fracture analysis.
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SVE size, LSVE =1, contains a multitude of high and low strength SVEs.
As the SVE size increases, the strength in the field becomes lower and
more homogeneous.

The strength PDFs in Fig. 11 show the same trends for each m value
for the various Weibull distributions. The change of mean (sc) and
standard deviation (ς) of strength versus SVE size are also shown in
Fig. 12. As m increases, the mean strength generally increases. The only
exception is LSVE =1 and =m 1

2 , as shown in Fig. 12(a). This is due to
the wide span of crack lengths allowed by this distribution. Generally,
the majority of the cracks for this distribution are extremely small.
However, larger cracks are allowed, which results in an extremely high
standard deviation. Moreover, as shown in Fig. 12(a), sc decreases when
LSVE increases. This well-known size effect for quasi-brittle materials is
contributed to the fact that larger SVEs contain more microcracks thus

are more likely to contain longer cracks. This results in lower mean
strengths for larger SVEs.

As the size of the SVE increases, the standard deviation ς tends to
zero. The decreased variation of the field is shared among all fields
homogenized/ averaged by SVEs, since as larger SVEs are considered
the population of microstructural features (microcracks herein) in-
creases and their statistic converges to that of the macroscopic domain.
From Fig. 12(a), the crack length Weibull shape parameter m has no
major impact on small values of ς for large SVE sizes. The mean strength
sc of the field still strongly depends on the actual crack distribution
shape m even at larger SVE sizes, due to the differences in the allowable
crack lengths.

Maintaining rock inhomogeneity is advantageous for fracture ana-
lysis of quasi-brittle materials, particularly under loading scenarios
where there is no macroscopic stress concentration points; i.e. similar to
problems considered in Section 4. This analysis shows the importance
of maintaining a relatively small SVE size to increase the fidelity of
fracture simulations using the corresponding homogenized strength
field. Consequently, as long as smaller SVEs are representative, they are
preferred for fracture analysis.

Fig. 16. Applied boundary conditions for aSDG dynamic fracture analysis.

Fig. 17. Macroscopically homogenized stress Σyy versus time for all Weibull
distributions. The detailed solution for different stages of solutions for =m 1

2
and 4 are shown in Figs. 21 and 22, respectively.

Fig. 18. Macroscopically homogenized strain Eyy versus stress Σyy for all
Weibull distributions.

Table 2
Important quantities of macroscopic tensile strain-stress response in y direction.

m 1
2

1 2 4

Initiation ̃t (μs)i 46 110 130.8 197.2

of ̃Ei × −6.44 10 5 × −1.54 10 4 × −1.83 10 4 × −2.76 10 4

nonlinear ̃Σ (MPa)i 4.60 11.0 13.1 19.7

response ̃ψ (J/m )i
3 148 847 1199 2719

̃t (μs)m 67.2 111.2 148.8 198

Maximum ̃Em × −9.41 10 5 × −1.56 10 4 × −2.08 10 4 × −2.77 10 4

stress ̃Σ (MPa)m 6.0 11.1 14.9 19.8

̃ψ (J/m )m
3 351 921 1666 2832

Failure ̃t (μs)f 76.7 117.2 156.4 203.0

̃Ef × −1.07 10 4 × −1.64 10 4 × −2.19 10 4 × −2.84 10 4

̃ψ (J/m )f
3 530 1124 2210 3297

Brittleness ̃ ̃t t/i f = ̃ ̃E E/f i 0.60 0.94 0.84 0.97

factors ̃ ̃ψ ψ/i m
0.42 0.92 0.72 0.96

̃ ̃ψ ψ/m f
0.66 0.82 0.75 0.86
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3.4. Weibull distribution comparison: crack density effect

The actual Yuen-Long marble sample statistics were utilized to
generate domains with crack density ε0 =0.243 in preceding sections.
However, the domains in this section are computationally created with
different crack densities to investigate its effect on the statistics of
mesoscopic strength. The sliding wing-crack model contains a variable
y that attempts to take into account the effect of crack interaction on
the fracture strength based on the crack density. A low crack density of
ε0 =0.05 and a high crack density of ε0 =0.75 were selected along
with ε0 =0.243 for this analysis. Solving Eq. (6) results in =y 0.37,
0.64, and 0.96 for =ε 0.050 , 0.243, and 0.75, respectively. This modifies
the fracture strength in Eq. (5), with a higher crack density resulting in
a lower overall strength, as would be expected.

Fig. 13 shows the strength contours for =m 1
2 with varying ε0. For

low density ε0 =0.05, the strength field has a nearly uniform high
strength. The (longer) cracks that are placed in the domain are easily
seen in the strength contour, as the sampling SVEs at the grid points
effectively expand them by a thickness proportional to the SVE size. The
resulting PDF in Fig. 14 is bi-modal due to the large number of SVEs
that do not contain a crack. Comparatively, the higher density ε0 =0.75

is almost uniformly lower in strength. As the crack density increases,
this bi-modal feature of the crack field for the SVE averaging process is
reduced. These results show that the crack density affects at what size
the SVE can be considered representative, i.e. the majority of sampled
SVEs containing cracks. For example, for =ε 0.050 SVEs with =L 1SVE

are not appropriate due to the large number of empty SVEs resulting in
the bi-modal shape for the PDF in Fig. 13(a). It is noted that the low
density of =ε 0.050 is intentionally chosen to better demonstrate that
LSVE cannot be set to arbitrarily small values. For domains with a higher
crack density, i.e. experimentally observed = =ε L0.243, 1SVE0 is
deemed representative and from this perspective even smaller SVEs can
be considered to better capture rock inhomogeneity. Finally, it is noted
that strength steadily decreases as the crack density increases. This is
similar to the effect that increasing SVE size has, because in both cases
more cracks are sampled within an SVE, thus reducing the (mean)
averaged fracture strength of SVEs.

4. Macroscopic fracture analysis

4.1. Problem description

As shown in Fig. 1(c), from the averaging scheme discussed in
previous sections, a structured grid of sc is formed for macroscale
fracture analysis. To study the effect of changing shape parameter m for
the Weibull distribution, four different simulations were performed for
each m value. For these simulations we use strength fields obtained by
SVE size =L 1SVE since they retain the most heterogeneity. The crack
density is ε0 =0.243. The four employed fields for sc are shown in
Fig. 9.

Fig. 15 shows two different grids employed for storing fracture
strengths and fracture analysis. As will be discussed below, the

×32 mm 32 mm RVE shown in Fig. 1(a) is subject to a vertical uniaxial
tensile loading. Since the grid spacing is =L n/ 0.1SVE ( =n 10; cf. Sec-
tion 2), fracture strengths in Fig. 9 are stored in a ×360 360 structured
grid shown in Fig. 15a. The initial spatial mesh for fracture analysis,
containing 803 triangular space elements is shown in Fig. 15b. Since the
aSDG directly discretizes space and time, for a spatially 2D problem, the
computational domain is three dimensional in spacetime. Accordingly,
the aSDG method builds a spacetime mesh of tetrahedral elements, by
pitching vertices of this mesh in time; cf. Section 2.4 and [71,45]. Mesh
adaptive operations adjust the space mesh to first ensure solution is
captured with sufficient accuracy and second align element boundaries
with proposed crack directions, so that fracture pattern is accurately
captured. An intermediate front mesh for a dynamic fracture analysis is
shown in Fig. 1(d). As can be seen, the elements in the front mesh are
finer close to fractures (blue to red thick lines) in response to the two
adaptive operations discussed above.

The spacetime elements of the aSDG method are tetrahedra attached
to this spatial front. Since the spatial front adapts in response to the
ever evolving fracture pattern, the spatial location of the quadrature
points of the spacetime elements varies. As shown in the zoomed view
Fig. 15c, a sample quadrature point is spatially contained in one square
of the uniform material grid with vertices V1 to V4. Fracture strength at
this point is obtained by linear interpolation of mesoscopic strength
values stored at vertices V1 to V4.

If elastic properties were also deemed to be inhomogeneous, they
would be stored in the material mesh and obtained by the same process.
However, homogeneous and isotropic elastic material properties for
rock are taken from Wong [43] for material sample S19: Young’s
Modulus =E 65 GPa, mass density =ρ 2700 kg

m3 , and Poisson’s ratio
=ν 0.3. A 2D plane strain condition is assumed for the analysis. A

displacement solution in the form,

=u axtx (8a)

=u byty (8b)

Fig. 19. Total crack length L versus time for all Weibull distributions.

Fig. 20. Averaged damage parameter D versus time for all Weibull distribu-
tions.
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satisfies the elastodynamic equation of motion. The coefficients a and b
are normal strain rates in x and y directions, respectively. The solution
(8) corresponds to the velocity field = =v ax v by,x y and the strain field
∊ = ∊ = ∊ =at bt, , 0xx yy xy . For all values of a and b, the corresponding
stress field is spatially uniform and temporally linearly increasing. This
type of loading is typical for fragmentation analysis, e.g., [54,21]. In
fact, for a material with homogeneous fracture properties, a fracture
initiation condition is suddenly satisfied across the whole domain once
the stress field becomes sufficiently large to satisfy such condition at
any point. This response is clearly non-physical and is avoided herein

by using mesoscopically inhomogeneous fracture strength fields.
By choosing specific values of a and b, confined and unconfined

uniaxial and biaxial tensile and compressive loading conditions can be
designed. For an unconfined uniaxial loading in direction y, stress
components are,

= = =σ σ σt σ0, ̇ , 0,xx yy xy (9)

where σ ̇ is a user-specified stress rate. For the plane strain condition,
the corresponding coefficients in (8) are = − +a σν ν Ė (1 )/ and

= − +b σ ν ν Ė (1 )(1 )/ . Herein, we choose the stress rate =σ ̇ 10 Pa/s11 .

Fig. 21. aSDG solution visualization for Weibull shape parameter =m 1
2 . Color and height fields depict internal and kinetic energy densities, respectively. (For

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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This corresponds to strain rates = −a 0.6/s and =b 1.4/s for =E 65 GPa
and =ν 0.3. That is, displacement solution in (8) corresponds to a
spatially uniform and temporally increasing tensile loading ( >σ ̇ 0) in
vertical direction until the very first crack is nucleated in the macro-
scopic domain.

The initial and boundary conditions for this problem are set con-
sistent with these solution fields and are shown in Fig. 16. Due to the
temporally increasing stress field in (9), eventually a crack is nucleated
from the weakest point of the sampled fracture strength field, cf.
Fig. 15a. In subsequent times, the displacement, velocity, strain, and

stress solutions presented above no longer hold as the propagation of
cracks disrupt them. Consistent with the exact solution prior to nu-
cleation of any cracks, we enforce a traction free boundary condition on
the vertical boundaries. On top and bottom surfaces we apply zero
tangential stress (frictionless condition) and normal velocity

= =V bH/2 22.4 mm/s0 . This resembles a displacement-control loading
in quasi-static condition and ensures that we capture the unloading part
of the macroscopic strain-stress curve through the process of loading
and failure of the RVE.

In simplest form, a crack nucleation/extension criterion compares a

Fig. 22. aSDG solution visualization for Weibull shape parameter =m 4. Color and height fields depict internal and kinetic energy densities, respectively. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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scalar effective stress seff formed from the normal tn and shear ts com-
ponents of traction components on a potential crack surface versus an
effective fracture strength ̃s . If at the spatial location x, the condition

̃⩾s θ s θx x( , ) ( , )eff is satisfied for any potential crack extension angle
∈θ π[0, 2 ] in 2D, a crack is nucleated (or extended if x is already the tip

of a propagating crack), along an angle for which ̃s θ s θx x( , )/ ( , )eff is
maximum (and greater than 1). The dependence of ̃s on x represents an
inhomogeneous strength field, whereas anisotropy of strength is in-
corporated on the dependence of ̃s on θ, an aspect not considered in the
present study.

Since the following fracture simulations are for uniaxial tensile
loading, we aim to employ an effective stress model that is more ap-
propriate for such loading. The inhomogeneous fields for effective
fracture strength ̃s are obtained from the uniaxial compressive strength
fields for sc in Fig. 9. The Mohr-Coulomb failure criterion stipulates a
relation between uniaxial tensile and compressive strengths; that is

̃ = − +s s ϕ ϕ(1 sin )/(1 sin )c , where = −ϕ μtan ( )1 is the friction angle.
Similar to [43] we assume the macroscopic friction coefficient to be 0.6

and use the linear relation above to map the compressive strength fields
in Fig. 9 to those for ̃s . Finally, a shortcoming of the Mohr-Coulomb
failure criterion is that it predicts incorrect fracture angles, thus making
it inappropriate for tensile fracture simulations. Instead, we employ the
Maximum Circumferential Stress Criterion (MCSC) [72], where = +s tneff

and +. is the Macaulay positive bracket, ensuring that only tensile
traction ( >t 0n ) contributes to the effective stress. We refer the reader
to [22] for the details on this effective stress model and its use by the
aSDG method.

4.2. Macroscopic strain versus stress response

The purpose of this example is to demonstrate the great effect of the
distribution of microcrack length on macroscopic response. The power
law distribution of half crack length for S19 in [43] and all four syn-
thesized Weibull distributions in Fig. 5 have the same mean values.
However, they result in different PDFs for mesoscopic strengths in
Fig. 8. We use the shape parameter m to demonstrate the great

Fig. 23. aSDG front meshes for Weibull distributions at maximum stress stage.
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influence of the shape of PDF of microcracks on macroscopic response
subsequently. By referring to Figs. 5 and 8, it is noted that the results for

=m 1
2 would be the most representative for rock sample S19 in [43]

with its power law distribution.
We use homogenization boundary integrals [73] to obtain macro-

scopic strain E and stress Σ tensors for each instant of the loading for
different values of m. These homogenized values correspond to aver-
aged stresses and strains that are applied on the boundary of the

×32 mm 32 mm RVE in Fig. 16. Fig. 17 shows the histories of Σyy versus
time for all Weibull distribution models for microcrack length; since

=Σ 0xx and =Σ 0xy (as expected from problem description), their his-
tories are not presented.

To discuss important stages of strain versus stress response, we focus
on the result for =m 1

2 . As shown, up to time ̃= =t t 46 μs, Σi yy linearly
increases versus time; cf. (9). At this time, the first cracks are nucleated
in the domain due to the increased stress level, resulting in the de-
gradation of rock. This response continues until the maximum stress

̃ =Σ 6 MPam is attained at ̃= =t t μ67.2 sm . The stress ̃Σm can be

associated with macroscopic tensile strength of this size of RVE for
=m 1

2 . Past time ̃tm, cracks (shown later) have propagated in large
portions of the domain. This results in stress unloading until Σyy reaches
zero at ̃= =t t 76.7 μsf . Afterwards, some oscillations are observed in
stress response due to dynamic nature of the loading and complete
failure of the RVE.

The three important points of strain-stress response are: initiation of
nonlinear response, maximum stress, and failure. The time ( ̃t ), strain ( ̃E ),
stress ( ̃Σ), and energy density ( ̃ψ ) corresponding to these stages are
subscripted with i m, , and f, respectively, as observed in the preceding
paragraph. Herein, energy refers to the area under the strain-stress
curve. Thus, ̃ψf is the dissipated energy per unit volume which along
with macroscopic the strain-stress response can be used to calibrate a
bulk damage model [74].

We compare macroscopically homogenized strain versus stress re-
sponses in Fig. 18. Unlike Fig. 17, the portion of response past failure is
not depicted to concentrate only on elastic to full damage transition. As
mentioned, having a larger variation on initial crack length distribution

Fig. 24. aSDG deformed shape for Weibull distributions at failure stage.
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for =m 1
2 results in higher variations and generally lower values for

averaged mesoscale fracture strengths; cf. Figs. 9 and 12 ( =L 1SVE ).
Having smaller minimum strengths (sc and ̃s ), results in earlier time for
failure initiation ̃ti (thus smaller ̃Ei and ̃Σi) in Figs. 17 and 18. The
smaller minimum and overall strength values for sc also results in a
weaker rock compare to other m values, particularly =m 4. This is
reflected in its much smaller macroscopic tensile strength. Finally,
larger standard deviation in microcrack length (and thus mesoscopic
strength ̃s ), results in an expanded time and strain range for transition
from the initiation of nonlinear response to maximum stress stages in
Figs. 17 and 18, respectively.

Table 2 compares time, strain, stress, and energy density scales of all
Weibull distributions at different stages of macroscopic solution. As
discussed above, =m 1

2 has the lowest nonlinear response initiation
time/strain/stress and maximum stress. These trends continue as m
increases until the maximum values are realized for =m 4. Again, the
reason for this trend is the higher minimum and overall mesoscopic
fracture strengths ̃s as m increases. Specifically, we observe that non-
linear response in terms of time, strain, and stress starts 4.28 times
earlier for =m 1

2 compared to =m 4. In addition, =m 4 corresponds to
a much stronger rock given that its macroscopic tensile strength ( ̃Σm) is
3.30 times of that of =m 1

2 . Higher stress levels for initiation (i) and
maximum stages (m) are the main contributors for the =m 4 specimen
having the highest toughness as well; the ratio of dissipated energy
density ̃ψf of =m 4 to =m 1

2 solution is 6.22, which is at an even higher
value than corresponding ratios for tensile strength and nonlinear in-
itiation stress limit.

Next, we study the effect of m on brittleness. As observed in Figs. 17
and 18, once the rock’s nonlinear response initiates, it takes much less
time and strain for =m 4 sample to reach failure stage compared to
samples with lower m values. That is, there is much less time and a
smaller deformation safety zone for this rock once failure initiates. This
is reflected in a very high brittleness factor ̃ ̃t t/i f = ̃ ̃E E/f i =0.97 for =m 4
compared to 0.60 for =m 1

2 .

From an energy perspective, ̃ ̃ψ ψ/i m is the ratio of elastic energy
stored up to the initiation of nonlinear response to the energy consumed
at the onset of unstable unloading. Moreover, ̃ ̃ψ ψ/m f represents the ratio
of energy at the onset of unloading to the total dissipated energy at
failure. These measures are deemed to represent the energy brittleness
indicators for the loading and unloading phases. As can be seen from all
proposed measures of brittleness, =m 1

2 and =m 4 samples are the
least and most brittle ones. In summary, while a higher m corresponds
to a higher strength and tougher rock, the tendency of the mesoscopic

strength ̃s to a uniform field has the drawback of making the rock more
brittle.

4.3. Analysis of crack propagation in the RVE

In this section we study the dynamics of crack propagation and
analyze the fracture pattern at different stages of solution. Fig. 19
shows the total length of propagated crack, L, in the domain over time
for each Weibull distribution with shape parameter m. As m increases,
more time (and therefore, higher stress) is required to initiate crack
propagation. This is in agreement with results in Section 4.2. Interest-
ingly, the result for =m 1

2 does not depict a rapid growth of L. For

=m 1
2 cracks are nucleated (and propagated) at the weakest points in

the domain from ̃ =t 46 μsi to around =t 65 μs. However, due to the
high variability of mesoscopic strength ̃s , crack tips may be surrounded
by much higher strength rock. About 20 μs time is needed to build up
the overall stress field sufficiently high to enable the propagation of a
crack through the surrounding area, explaining the rather slow crack
growth rate during this period. In contract, for higher m values meso-
scopic strength field is more uniform. Thus, once the first cracks are
nucleated there is a faster growth of L.

Another observation is the continued growth of L past the failure
stage for all m values. For example, for ̃= =m t, 76 μsf

1
2 whereas L

growth significantly slows down only at ≈ −t 140 170 μs, corre-
sponding to about three full cycles of ̃Σyy oscillations past ̃tf in Fig. 17.
This is due to the dynamic nature of the loading; finite speed cracks and
microcracks continue to propagate even past macroscopic failure time ̃tf
until their growth is slowed down at a later time due to ever reducing
overall stress level shown in Fig. 17.

To have a better understanding on degradation and energy dis-
sipative role of propagated cracks, beside the total length of cracks we
monitor the level of damage parameter D on crack segments. As a crack
grows, D evolves over almost all parts of it that are partially debonded.
The regions close to the crack tip have the smallest damage value as the
damage evolution has just started therein. In contrast, the tails of the
larger cracks often experience full damage. The average damage para-
meter, D , computed over all crack segments and weighted by their
length in the averaging process is a good measure of the overall level of
debonding on all crack segments. The time history of D is shown in
Fig. 20. For =m 1

2 in the time range of ̃ =t 46 μsi to around =t 65 μs, we
observe a relatively high variation to D caused mainly by small length
of propagated cracks in Fig. 19. However, for all m values once suffi-
cient length of crack is developed, D settles in the range [0.75, 0.82].
That D does not tend to unity, i.e. full damage, for all crack segments is
contributed to dynamic nature of loading and microcracking phenom-
enon (shown in subsequent figures); while major cracks mostly ex-
perience full damage, many microcracks emanated from them experi-
ence only partial damage as the local damage driving stress magnitudes
may subdue faster than the rate at which damage evolves on their
surfaces.

The propagation of cracks in the domain are shown in Figs. 21 and
22. In these figures, each extreme of the Weibull shape parameters,

=m 1
2 and 4 are shown. The strain energy density is ∊∊≔ σU :1

2 , where
σ and ∊∊ are the stress and strain tensors. The kinetic energy density is

=K ρv v.1
2 , where ρ is the mass density and v is the velocity vector. In

Fig. 21 and all subsequent solution visualization U is mapped to color
field, where zero to maximum values are mapped to blue-to-purple
color range. The unit of U is =J/m Pa3 . Similarly, K is mapped to the
height field such that regions of high kinetic energy density appear
closer.

Different stages of the solutions in these figures are marked in the
time history of macroscopic stress in Fig. 17. For both m values, max-
imum stress ̃Σm corresponds to early stages of solution, where mainly
horizontally propagating cracks have traversed only a part of the do-
main. Regions of high strain concentration are observed around moving

Fig. 25. Macroscopically homogenized stress Σyy versus time for the com-
pressive loading example. The detailed solution for different stages of solutions
are shown in Fig. 26.
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crack tips and on the fronts of propagating elastic waves. Moreover, the
stress field relaxes in tail of the cracks as debonding occurs. As shown in
Fig. 17, past the failure time ̃tf the macroscopic stress Σyy oscillates
about zero and is dampened with each successive oscillation from
further failure of rock and dissipation of energy on fracture surfaces.
This is also reflected in decreased levels of strain energy densities at
latter frames of the solutions shown in Figs. 21 and 22. In comparison of
the two sets of solution, fracture initiates later for =m 4, involves
higher stress values, more abruptly reaches the failure stage, and results
in a more widespread and dense network of cracks and microcracks.

Fig. 23 shows the aSDG spatial front meshes for the dynamic frac-
ture simulations at ̃tm, the time of maximum stress ̃Σyy. As discussed, ̃tm
increases as m increases. Sections of the crack length which have al-
ready failed are indicated by a red line; locations where damage is

occurring (often close to crack tips) are indicated by lines of varying
rainbow color from blue to red, corresponding to ∈D [0, 1]. Generally
speaking, each crack distribution appears very similar, containing from
one to three zones of mostly horizontal and damaged cracks and ran-
ging in size from only about 10% to 20% of the domain width. These
cracks are nucleated from locations of low mesoscopic strength ̃s . It is
emphasized that all these simulations have started from the relatively
coarse spatial mesh (front mesh) shown in Fig. 15b and have resulted in
much smaller elements around propagating crack tips; mesh refinement
and coarsening operations in spacetime ensure that the differential
equations are accurately and efficiently solved on fracture surfaces and
in the bulk, and to accommodate arbitrary requested angles of crack
propagation.

Finally, Fig. 24 shows the deformed shape of the domain and crack

Fig. 26. aSDG solution visualization for the compressive loading example. Color and height fields depict internal and kinetic energy densities, respectively. Numbers
in parentheses are Σyy .
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pattern at ̃tf , the time ̃Σyy crosses zero. At failure for all domains except
for =m 1, the crack has continued to propagate from the initial damage
to completely intersect the domain such that the lower half has been
completely separated from the upper domain. As discussed before, the
more inhomogeneous mesoscopic fracture strength field for =m 1

2 , re-
sulted in an earlier initiation and slower progression for crack nuclea-
tion and growth. We believe that the more gradual nature of crack
propagation is the cause of the less complex fracture pattern for =m 1

2 .
The higher complexity and density of the fracture network for higher m
values is contributed to the more sudden process of failure and more
homogeneous mesoscopic fracture strength fields.

4.4. A compressive rock fracture example

While the preceding examples are for a macroscopic tensile loading
problem, rock is often under ambient compressive stress condition.
Thus, a fracture problem under uniaxial compressive loading is pre-
sented for completeness. The problem description is exactly the same as
the tensile examples, with the difference that an opposite loading rate is

used in (9); that is, = −σ ̇ 10 Pa/s11 , corresponding to strain rates
=a 0.6/s and = −b 1.4/s in (8).
In rock mechanics Mohr-Coulomb (MC), Hoek-Brown [75], or other

failure criteria are used for modeling fracture. As detailed in [76,22],
some of these models such as MC are not appropriate for tensile frac-
ture. That was the motivation of using MCSC criterion for tensile
fracture in preceding sections; cf. Section 4.1. We employ an un-
modified MC failure criterion for this problem. The form of the corre-
sponding effective stress model in terms of friction angle ϕ and traction
components tn and ts is provided in [22].

Another challenge in compressive fracture is that crack surfaces are
often closed and crack propagates in mode II , that is through frictional
sliding of crack surfaces. We have provided dynamic Riemann solutions
for contact-stick and contact-slip conditions in [58] and incorporated
them into an interfacial contact/fracture model for rock in [77]. These
Riemann target values are required for implementing such interface
conditions in aSDG and other discontinuous Galerkin methods. The
details of the model, including transitions and required regularization
between contact and separation, and between stick and slip modes are

Fig. 27. aSDG front meshes for the compressive loading example at different solution times.
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provided in [77]. In short, computational modeling of rock fracture
under compressive loading is generally more challenging and expensive
than under tensile loading. This has in part been the motivation for
using a tensile loading scenario for more detailed analyses in Sections
4.2 and 4.3.

Fig. 25 shows macroscopically homogenized stress versus time for a
domain where mesoscopic fields are obtained for =L 1SVE and Weibull
parameter =m 1

2 . We observe that the maximum compressive stress
increases by a factor of 4.75, compared to the corresponding tensile
value in Fig. 17 (6MPa vs. 28.6 MPa). The internal and kinetic energy
densities for different stages of solutions are shown in Fig. 26. Similar to
tensile loading problems, cf. Fig. 23, very little damage and crack
propagation is observed at the maximum stress stage.

We note that the tensile or compressive macroscopic stress histories
are not compared with experimental results. In [43], S19 sample
(whose statistics has been the basis of our synthetic microcrack popu-
lation at the micro-scale) has been used for a computational compres-
sive example. The Rock Failure Process Analysis method (based on the
linear finite element method) and quasi-static loading regime are used
in [43], whereas herein the aSDG method is used for dynamic simula-
tions under low loading rates. Albeit these and other notable differences
in terms of computational domain size and loading, there is a reason-
able agreement between the results; in [43] a maximum stress of about
40MPa is obtained for S19 at the macroscale and similar to Fig. 25,
there is a rather sharp softening response past the maximum stress. We
believe that the use of experimentally measured parameters of inter-
facial damage model, such as relaxation time and mode mixity para-
meter [21], and better representation of the experimental setting
(boundary conditions, specimen size, and loading rate) would enhance
the accuracy of macroscopic simulations. However, a more detailed
calibration of the macroscopic model is beyond the scope of this
manuscript.

Fig. 27 shows four different stages of solution in terms of total
solved finite elements. Since the front meshes are asynchronous, the
minimum time of the entire front mesh is reported for each stage. Si-
milar to tensile examples, advance mesh adaptive operations enable
exact tracking of cracks by refining and aligning element boundaries
with crack directions. As shown most cracks propagate from the first
nucleated crack in the lower right corner of the domain. The final
fracture pattern for this problem is shown in Fig. 28. For a uniaxial

compressive loading, the MC criterion predicts the planes with angles
± − ≈ ±∘ ∘ϕ(45 /2) 29.5 with respect to the loading (i.e. vertical) direc-
tion to satisfy the failure criterion first [22]. In fact, we observe that
many cracks are aligned close to this angle. Finally, it is noted that the
spatial front in Fig. 27(d) and Fig. 28 contains 80,850 triangles and
41,884 crack segments with a total length of five meters.

5. Conclusion

To incorporate the effect of rock microstructure, we employ a
homogenization approach to derive a mesoscopic fracture strength at
the center of circular SVEs that traverse a microcracked rock domain.
The fracture strength of an SVE is taken as the minimum strength of
microcracks contained in or intersecting it; the sliding-wing crack
model in [43] is used to compute individual strength of such cracks and
take their interaction into account. The homogenization of the effect of
microcracks to mesoscale drastically reduces computational cost com-
pared to explicit representation of microcracks and direct numerical
simulation of fracture at macroscale. Moreover, by using the microcrack
statistics of a real material, Yuen-Long marble from [43], and homo-
genization by SVEs a direct connection was established between the
microscale and the mesoscale fracture strength field.

In [43] microcrack length is assumed to follow a power law dis-
tribution. In addition to modeling this distribution, the effect of chan-
ging the distribution shape was investigated by using four different
shape parameters m for the Weibull distribution; for consistency with
the original rock mass, the mean of crack length was kept fixed. Lower
values of m result in a larger standard deviation for crack length, which
translates to a higher variation and overall lower strengths for the
homogenized mesoscopic fracture strength field. We demonstrated that
the SVE size has a similar effect, in that by increasing LSVE the mean and
standard deviation of mesoscopic strength decrease. This size effect was
quantitatively analyzed. We also studied the effect of crack density ε0 on
homogenized strength. Due to maintaining a higher level of material
inhomogeneity, smaller SVEs are preferred for brittle fracture analysis;
however, there is a limit to LSVE. For example, at low crack densities, for
small LSVE many SVEs do not contain any cracks and are not re-
presentative of the local response.

We use the homogenized mesoscopic fracture strength fields for
different Weibull m parameters for a macroscopic uniaxial tensile pro-
blem. The SVE size =L 1SVE was chosen as it provides the highest
heterogeneity for mesoscopic strength fields without having the pro-
blem of being too small for =ε 0.2430 . Homogenizing the strain and
stress tensors at the macroscale revealed that RVE with the highest
Weibull parameter =m 4 had about 3 times the tensile strength and 6
times the toughness of the RVE with the lowest =m 1

2 . However, the
more uniform length distribution of microcracks for higher m values
results in a more instantaneous mode of failure, with a more wide-
spread and complex fracture pattern. Therefore, the gains in strength
and toughness are offset by a more brittle fracture response. While for
all m, the microcracked domains are synthesized and the closest model
to the real S19 sample in [43] is for =m 1

2 , this example demonstrates
the great impact material microstructure has on its macroscopic re-
sponse. Thus, accurate characterization and modeling of microstructure
is of utmost importance in failure analysis of quasi-brittle materials.
Finally, while the macroscopic results, e.g., Figs. 21–24, are not com-
pared with any experimental results, we note that the use of an in-
homogeneous fracture strength field is crucial in capturing realistic
fracture patterns; otherwise, as shown in [39], the use of a homo-
geneous strength field can result in nonphysical sudden nucleation of
cracks almost everywhere in the domain.

We demonstrate the effectiveness of the SVE homogenization ap-
proach for modeling rock fracture. There are; however, several areas of
improvement for future research. First, the current process assumes a
fully isotropic strength field. For rock with bedding planes, fracture
strength should be homogenized as an anisotropic field and calibrated

Fig. 28. aSDG deformed shape for the compressive loading example at
=t 292.0 μs.
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to appropriate fracture models, e.g., those in [78,79]. Second, we ac-
knowledge that the macroscopic fracture results are not validated
against experimental results. For more realistic failure analysis, as in
[80] other fields such as elasticity tensor should be considered random
and inhomogeneous. Experimental results can be used to calibrate both
elastic and fracture properties of inhomogeneous rock [81] and cali-
brate certain parameters of the interfacial damage model that were
missing in the present study. Third, by increasing the number of sta-
tistical realizations to more than the one considered herein, a more
accurate estimation of the statistical variation of the ultimate macro-
scopic fracture strength is obtained; see for example [82]. Fourth, in
Section 4 we used (6) for modeling microcrack interaction. More rea-
listic interaction models can either be calibrated from experimental
results [83] or the analysis of microcrack propagation and interaction
in tensile model. Fifth, microcrack-based bulk damage models
[84,54,74,85,86] can be much more efficient than the interfacial da-
mage model considered herein and can even be employed in accurate
hybrid diffuse damage and interfacial cracking approaches [87].
Moreover, for compressive fracture, microcrack propagation and fric-
tional sliding can be homogenized into bulk damage and plasticity
models [88]. The calibration and use of these models is especially im-
portant when the simulation of many statistical realizations is needed.
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