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Highlights 

 

• Discontinuous Galerkin Method (DGM) for solving radiative transfer equation (RTE) 

• DGM employed in both space and angles is superior to hybrid methods 

• Convergence in polynomial order and mesh refinement is established 

• Comparison with benchmark results shows good agreement 

• Numerical examples show how DGM captures discontinuous solutions. 

                  



Space-Angle Discontinuous Galerkin Method for Radiative
Transfer between Concentric Cylinders

Hang Wang, Reza Abedi, Saba Mudaliar

Abstract
The integro-differential radiative transfer equation (RTE) for concentric cylinders problem in-
volving scattering, absorption and emission is solved using the discontinuous Galerkin (DG)
finite element method (FEM). The space-angle DG method directly solves the cylindrically-
symmetric RTE as a three-dimensional problem, where a 1D spatially domain in radial distance
r is twice extruded in the cosine of polar angle (µ) and the difference in azimuthal angle (ϕ̃)
directions. Thus, the method has a higher accuracy than hybrid FEM-Discrete Ordinate (SN )
and FEM-Spherical Harmonic (PN ) methods. This is reflected by numerically verified conver-
gence rate of p + 1 for smooth problems and space-angle polynomial interpolation order of p.
The axisymmetric RTE formulation is more complicated than the plane-parallel formulation, for
having two independent angle directions (µ and ϕ̃) and an extra derivative term with respect
to ϕ̃ in the differential equation. This results in a complex characteristic structure in r − ϕ̃
plane with strong discontinuity lines in radiation intensity I. A method of characteristics is
formulated and implemented to verify the DG formulation and demonstrate its accuracy when
such strong discontinuities persist in the solution, specifically when there are no scattering and
absorption terms. The relaxation of inter-element continuity constraint of continuous FEMs
by this DG method implies its superiority in numerically capturing such discontinuities. Fi-
nally, a benchmark problem pertained to heat radiation in a gray gas and another one with
nonzero phase function demonstrate the effectiveness of the method in modeling black-body
and scattering angular integration terms.

Keywords: Radiate transfer equation, discontinuous Galerkin, space-angle, method of char-
acteristics, concentric cylinders, phase function, convergence rate.

1 Introduction
The Radiative Transfer Equation (RTE), a first order integro-differential equation, describes
the radiation intensity while propagating in an absorbing and scattering medium. The RTE
plays an important role in radiation transfer in atmosphere, semitransparent liquid and solids,
porous materials, and many other participating media [1, 2]. Different numerical methods have
been formulated to solve the RTE over the past few decades. These methods, including Finite
Volume (FV) method [3] and Finite Element Method (FEM) [4], are commonly hybridized with
the Discrete Ordinates Method (SN or DOM) [5, 6] or Spherical Harmonic Method (PN ) [7, 8, 9]
to handle the integrals over the solid angle.

In SN methods, the angular dependence of radiation intensity in the RTE is decoupled
by the angular discretization using a discrete set of directions (discrete ordinates) while the
integral terms are replaced by quadratures. The spatial dependence in the RTE is discretized
by the numerical methods mentioned above. Thus, the RTE and its corresponding boundary
conditions are transformed into a set of Partial Differential Equations (PDEs) only in terms of
the spatial coordinates. Two drawbacks of the classical SN method are known as false scattering
and the ray-effect [10] that mainly caused by the form of angular discretization [11]. In addition,
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the SN method can be problematic when specularly reflecting boundaries are present [12]. If a
reflected beam on the boundary does not coincide with any discrete ordinate, the intensity of
the specularly reflected beam is generally undetermined. Besides, special schemes are needed
in the DOM for coping with the angular derivative terms in the RTE in curvilinear coordinates
[13]; that is, the angular redistribution [14] makes it difficult to handle the angular derivative
terms in the RTE.

In PN methods, the radiation intensity field is approximated by an orthogonal series of
spherical harmonics, thereby giving the method its name [1]. In the spherical harmonics series,
each term has one spatial coefficient and one angular coefficient. After the integration, the
expansion coefficients are formulated into a set of PDEs. The drawbacks of the PN method
are the derivation of the set of PDEs and the corresponding boundary conditions for high-order
approximations, tendency of getting nonphysical oscillations and negative values for radiation
intensity for high order approximations [15], and the lack of accuracy in optically thin media
[16].

The (continuous) FEM is a versatile method that can simulate a wide range of problems
in scientific and engineering fields which allows complex geometries. It has also been used for
solving the RTE in the spatial domain by Shmygevskii [17], Krim [18], Razzaghi [19], Sallah
[20], and Egger et al. [21]. When solving the RTE in spatial domain by the FEM, the radiation
intensity is approximated by a series of shape functions in space. FEMs are generally preferred
over FV and Finite Difference (FD) methods if higher orders of accuracy are sought. However,
continuous FEMs do have a disadvantage in dealing with discontinuous and high gradient so-
lution features. This is particularly important for the RTE, since the propagation of rays along
characteristics can result is strong discontinuities in radiation intensity. The Discontinuous
Galerkin (DG) method is more appropriate for this class of problems, including the RTE, since
it relaxes the strong inter-element continuity of continuous FEMs.

The DG method was originally introduced by Reed and Hill [22] to study the neutron
transport equation. For DG methods the basis functions are discontinuous across element
interfaces; accordingly the jump between interior traces of solution and the so-called numerical
fluxes is weakly enforced on inter-element boundaries. DG methods are specifically suitable
for hyperbolic PDEs and the RTE, since the evolution of solution along characteristics can
result in (strong) discontinuities. Several hybrid DG methods such as the SN -DG method
[23, 24, 25, 26, 27, 28], and the PN -DG method [29] have been proposed, wherein the spatial
domain is discretized by the DG method.

One can take advantage of FEM and DG methods to discretize the entire spatial and angular
domain rather than only the spatial domain, as in the aforementioned hybrid DG methods. Liu
[30] and Pontaza [31] used the FEM in both space and angle to solve the one-dimensional
RTE. Castro and Trelles [32] developed the spatial and angular finite element to solve multi-
dimensional RTE with high order of accuracy. Gao and Zhao [33, 34] associated the DG in
space with a piece-wise constant FEM in angle. As in the spatial domain, continuous methods
may fail to accurately capture discontinuities of the solution that can occur in the angular
domain. Formulating a DG method in both space and angle is desirable since it prevents
the artificial continuity constraint of hybrid DG methods in angle. Moreover, arbitrarily high
orders of accuracy can be achieved both in space and angle directions. Kophazi and Lathouwers
[35] implemented the DG method in both space and angle to solve the Boltzmann transport
equation. Kitzmann et al. [36] solved the one-dimensional RTE with spherical symmetry by the
DG method. In previous works [37, 38], a high order space-angle discontinuous Galerkin (DG)
method for the plane-parallel RTE was proposed.

There are many fewer computational works for the steady state radiative heat transfer in
one-dimensional cylindrical medium compared to plane-parallel and some other RTEs. Some
numerical methods formulated for this problem are Monte Carlo (MC) [39] and variational
[40, 41, 42] methods. Nowadays, with the significant improvements to computing power, the
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MC method can solve radiative transfer problems efficiently and accurately. In fact, due to
its accuracy, the MC method has been used to solve several benchmark problems to evaluate
the performance of other methods [43, 44]. Besides, the MC method can easily handle com-
plex geometries and have a low algorithmic complexity. However, it has some disadvantages.
For example, it becomes very slow because of the exponentially increasing number of photon
interactions when intensive scattering problems are considered. For the computation of conduc-
tion and/or convection parts, it is difficult for the MC method to match the required grid size
needed to couple with grid-based methods, whereas, forming such couplings is relatively easy
for the DG method proposed here. Regardless of the choice of numerical method, a few difficul-
ties associated with the one-dimensional cylindrical RTE are: (1) it involves two independent
variables in angle direction, which results in a high dimensional problem in spatial and angu-
lar domain; (2) an additional angular derivative term in the RTE in curvilinear coordinates
requires the specification of target fluxes and their integration on new angle-normal element
interfaces; (3) the additional angular term results in curved characteristics in space and angle
and more complex jump manifolds for radiation intensity. For simplification, only the steady
state radiative transfer in gray media is considered and the spectral radiation is not discussed
in this paper. However, the existing approaches to band correlation can help study the spectral
properties by providing the radiative intensity in a set of gray gases and the probability den-
sity function (PDF) of absorption coefficient [45], e.g., k-distribution method [46], correlated-k
method [47, 48] and spectral-line-weighted sum-of-gray-gases (SLWSGG) [49, 50].

The remainder of manuscript is structured as follows. The formulations of the method of
characteristic and the DG method for the steady state RTE in one-dimensional cylindrical coor-
dinates are presented in §2. The implementation of the DG method and the required extrusion
operations in the angle direction and the implementation of the method of characteristics are
described in §3. Next, several numerical examples are presented in §4 to verify and validate the
DG formulation. This includes the use of Method of Manufactured Solution (MMS), an example
of a sharp discontinuous solution in space and angle obtained by the method of characteristic, a
benchmark problem from [40], and another problem in an anisotropic scattering medium. Final
conclusions are drawn in §5.

2 Mathematical description
2.1 Radiation transfer equation and boundary conditions
The general form of RTE for a gray medium is,

dI(x, ŝ)
ds = −βI(x, ŝ) + κIb(x) + σs

4π

∮

4π
I(x, ŝ′)Φ(ŝ, ŝ′)ds′ + S(x, ŝ). (1)

This equation describes the change of radiation intensity I(x, ŝ) at spatial location x along the
path ds in the angle space with angle coordinate ŝ. The values β, κ, and σs, are the spatial-
dependent extinction, absorption, and scattering coefficients, respectively. The anisotropic
scattering phase function is represented by Φ(ŝ, ŝ′) and s′ is the solid angle for phase func-
tion integration. The solid angle differential for s′ is denoted by ds′. The spatial-dependent
total black-body radiation intensity is given by Ib. The source term is denoted by S(x, ŝ). If
radiative equilibrium prevails, Ib is [2],

Ib(x) = 1
4π

∮

4π
I(x, ŝ′)ds′. (2)

For one-dimensional axisymmetric problems (infinite in z direction), the RTE for a gray
medium that emits, absorbs and anisotropically scatters in an cylindrical enclosure is written
as,
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sin θ cos ϕ̃∂I(r, µ, ϕ̃)
∂r

− sin θ sin ϕ̃
r

∂I(r, µ, ϕ̃)
∂ϕ̃

= −βI(r, µ, ϕ̃) + κIb(r) + σs
4π

∫ π

−π

∫ 1

−1
I(r, µ′, ϕ̃′)Φ(µ, ϕ̃, µ′, ϕ̃′)dµ′dϕ̃′ + S(r, µ, ϕ̃),

(3)

where the spatial location x is represented in polar coordinates with r, ϕx, and z corresponding
to radial distance, spatial azimuthal angle, and coordinate along the axis of symmetry, respec-
tively. The spherical coordinates of solid angle ŝ are polar angle θ and angular azimuthal angle
ϕs, as shown in fig. 1. The radiation intensity is expressed as I(r, µ, ϕ̃), where µ = cos(θ) 1

and ϕ̃ is the azimuthal angle measured from the local radial direction; that is, ϕ̃ = ϕs − ϕx.
The spatial coordinates z and ϕx are removed due to invariance along the axis of symmetry,
and angular symmetry of the problem (enabling the use of ϕ̃ instead of two coordinates ϕs
and ϕx). The direction of the ray at point x and angular coordinates θ and ϕ̃ is expressed
as ŝ = (sin θ cos ϕ̃, sin θ sin ϕ̃). To guarantee the energy conservation, the phase function is
normalized as,

1
4π

∫ π

−π

∫ 1

−1
Φ(µ, ϕ̃, µ′, ϕ̃′)dµ′dϕ̃′ = 1. (4)

Figure 1: Cylindrical coordinates for the one-dimensional RTE.

Equation (3) is solved on the three-dimensional domain (r, µ, ϕ̃) ∈ Ω = (R1, R2)× (−1, 1)×
(−π, π), where R1 and R2 are the radii of inner and outer surface walls; cf. Figure 1. For an
opaque surface that emits and reflects specularly and diffusively, the radiation intensity on the
domain boundary, Rw, with index w ∈ {1, 2} referring to the inner and outer radii, is given by
[2],

I(Rw, ŝ) = ε(Rw)Ib(Rw) + ρd(Rw)
π

∫

ŝ′·n>0
I(Rw, ŝ′)ŝ′ · ndµ′dϕ̃′ + ρs(Rw)I(Rw, ŝs), (5)

where n is the surface normal, ε is the wall emissivity and ρ is the reflectivity divided in a
diffuse component ρd and a specular component ρs with the relationship, ρ = ρd + ρs. Since
the surface is opaque, ε+ ρ = 1. The first term on the right side of (5) arises from the surface
emission. Under the assumption of diffuse-gray Ib = n2σT 4/π [2]. The second term is the
diffusively reflected component. The third term is the specularly reflected component, where ŝs
is the specular direction defined as the direction of a light beam traveling from the surface in a
direction of ŝ after a specular reflection. This direction is given by ŝs = ŝ−2(ŝ ·n)n. Equation
(5) is specified on the inflow boundaries which are defined when ŝ · n > 0.

1Since, the spatial coordinate (r, ϕx, z) does not include a spatial azimuthal angle, the subscript s is dropped
from angular azimuthal angle and its cosine value for brevity.
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2.2 Characteristic directions for the RTE
The method of characteristics was firstly introduced to solve the RTE in 1970 [51]. Rukolaine
et al. [12] extended this method to solve the 2-D RTE in cylindrical coordinates with complex
boundary conditions. By solving Ordinary Differential Equations (ODEs) along the character-
istic lines, this method provides physical insight on how the rays propagate in the space-angle
domain and can be computationally advantageous for high spatial or angular dimension prob-
lems.

To validate DG solution, the method of characteristics is introduced. Along a characteristic
line, the RTE takes the form,

dI
ds = S̆(r, µ, ϕ̃), (6)

where S̆ is the total source term which is the right hand side of (3),

S̆(r, µ, ϕ̃) = −βI(r, µ, ϕ̃) + κIb(r) + σs
4π

∫ π

−π

∫ 1

−1
I(r, µ′, ϕ̃′)Φ(µ, ϕ̃, µ′, ϕ̃′)dµ′dϕ̃′ + S(r, µ, ϕ̃). (7)

Equation (6) is written as,

V ·
(
∂I

∂r
,
∂I

∂µ
,
∂I

∂ϕ̃

)
= |V | dIdl = S̆, (8)

where V =
(
sin θ cos ϕ̃, 0,− sin θ sin ϕ̃

r

)
, ẽ = V

|V | is the unit vector (direction) along the character-
istic, and l is the length coordinate along the characteristic starting from the inflow (upstream)
towards the outflow (downstream), tangent to ẽ as shown in fig. 2. The relation between the
increments of space-angle coordinates and characteristic length is,

dr = sin θ cos ϕ̃
|V | dl,

dµ = 0,

dϕ̃ = −sin θ sin ϕ̃
r|V | dl,

(9)

accordingly, characteristic lines stay in the r − ϕ̃ plane, since dµ = 0.

Figure 2: Coordinate along a characteristic line.

The ODE (8) is solved starting from inflow parts of spatial boundary of Ω (at R1 or R2),
where I is given at the beginning of characteristic lines as initial condition. This can easily be
done when there are no angular integration terms in (7), that is when Ib, Φ = 0. For details of
the implementation of this method when these angle integrals are present, refer to §3.2.

2.3 Discontinuous Galerkin formulation
Figure 3 shows an m×n× l tensor product discretization of space-angle domain Ω = (R1, R2)×
(−1, 1)× (−π, π), discretized into {r0, r1, ..., rm}, {µ0, µ1, ..., µn}, and {ϕ̃0, ϕ̃1, ..., ϕ̃l} along r, µ,
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Figure 3: The illustration of the extrusion of the spatial domain in angle directions µ and ϕ̃.
The left figure shows the one-dimensional spatial elements and the right shows their extrusion
to form the three-dimensional domain Ω.

and ϕ̃ directions, respectively, for r0 = R1, rm = R2, µ0 = −1, µn = 1, ϕ̃0 = −π, and ϕ̃l = π.
For an arbitrary element Q ∈ Ω in fig. 3, the interior residual corresponding to PDE (3) is,

RQ = sin θ cos ϕ̃∂I
∂r
− sin θ sin ϕ̃

r

∂I

∂ϕ̃
+ βI − κIb

− σs4π

∫ π

−π

∫ 1

−1
I(r, µ′, ϕ̃′)Φ(µ, ϕ̃, µ′, ϕ̃′)dµ′dϕ̃′ − S(r, µ, ϕ̃).

(10)

For DG methods the continuity of solution on the boundary of elements is weakly satisfied
relative to a target or numerical flux I∗. As mentioned in §1, this relaxes the continuity con-
straint of continuous finite element methods, which can be both nonphysical and not accurately
model the propagation of waves along characteristic lines. For RTE, the residual on ∂Q, the
boundaries of the element Q, corresponds to differential operator dI(x, ŝ) / ds in (1) and is
expressed as,

R∂Q = ŝ · n(I∗ − I), (11)

where n = (nr, nϕx , nz) is the normal direction on ∂Q in spatial coordinates and ŝ is the
direction of radiation.

The target value I∗ corresponds to the upstream value along the direction of wave propa-
gation and is given by,

I∗ =
{
I ŝ · n ≥ 0 outflow boundary
Iout ŝ · n < 0 inflow boundary

⇒ R∂Q =
{

0 ŝ · n ≥ 0
ŝ · n(Iout − I) ŝ · n < 0

.

(12)
That is, on outflow boundary of Q, where ŝ · n ≥ 0, I∗ is set equal to interior trace and the
jump condition R∂Q is trivially satisfied. On the other hand, the inflow boundaries correspond
to ŝ · n < 0. For inflow boundaries, the target flux is set equal to outside intensity Iout. When
the inflow boundary of Q is on the boundary of domain, ∂Ω, Iout is set to the boundary flux
determined from (5). For a point on an inflow interface of Q that is inside Ω, I∗ is set to Iout,
the interior trace of I at the same location for the neighboring element Qout. Clearly, Iout is
also the target value for the same point on the boundary of neighbor element Qout. For Qout
this point is on its outflow boundary and R∂Q is trivially satisfied. That is, for any interior
interface in Ω, there is exactly one non-trivially zero R∂Q on the side that is inflow boundary.
This corresponds to the downstream direction of characteristic lines; cf. fig. 2.

Next, the specific form of ŝ · n for axisymmetric RTE in (3) is discussed to determine
inflow and outflow boundaries of Q and I∗ from (12). For this configuration ŝ = (sin θ sinϕx,
sin θ sinϕx, cos θ). Since the solution is invariant along z-direction and ϕx = −ϕ̃ when ϕs = 0
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the expression for ŝ · n in (11) is simplified to,2

ŝ · n = sin θ cos ϕ̃nr − sin θ sin ϕ̃nϕ̃. (13)

Note that the factors of nr, nϕ̃, and nµ (zero) in ŝ · n correspond to the factors of dI / dr,
dI / dϕ̃, and dI / dµ (zero) in (10), considering that the geometric Jacobian of the cylindrical
coordinate system is equal to r.

Figure 4: The illustration of normal vectors of the element Q and its neighboring elements on
the shared boundaries in r-ϕ̃ plane. The subscript and superscript of normal vectors correspond
to the element with normal vector and its direction, respectively.

A cubic element in fig. 3 has 6 boundaries in Ω. Figure 4 shows element Q and its four
neighbors in the r-ϕ̃ plane. The two boundaries along positive and negative µ directions are
not shown as ŝ · n is trivially zero and there is no coupling between elements in µ direction
(this corresponds to the absence of dI / dµ term in (10)). The normal vectors for element Q
point outward toward neighboring elements B, C, D and E . The normals of the neighboring
elements on the shared boundaries with Q point in the opposite directions. For normal vectors,
the subscripts denote the element for which the normal vector is defined and the superscripts
show the coordinate and the direction that the normal is pointing to. For example, nϕ̃

−
Q is the

normal from element Q to E in the negative ϕ̃ direction.
The specific values of (nr, nϕ̃, nµ) are shown in parentheses for the four faces of the ele-

ment Q that are in the r-ϕ̃ plane in fig. 4. Specifically, (nr, nϕ̃, nθ) = (∓1, 0, 0) for ∂Q∓r and
(nr, nϕ̃, nθ) = (0,∓1, 0) for ∂Q∓ϕ̃ , respectively, and their corresponding ŝ · n and residuals are,

ŝ · n = sin θ cos ϕ̃nr ⇒ R∂Qr = sin θ cos ϕ̃nr(I∗ − I), on ∂Q∓r (14a)
ŝ · n = − sin θ sin ϕ̃nϕ̃ ⇒ R∂Qϕ̃ = − sin θ sin ϕ̃nϕ̃(I∗ − I), on ∂Q∓ϕ̃ (14b)

The coordinates ϕ̃ and µ = cos θ at each point on these four boundaries determine the value of
ŝ · n in (14) and whether the residual is trivially zero for ŝ · n ≥ 0.

It is noted that while the boundary of Ω in fig. 3 includes r-, ϕ̃-, and µ-normal surfaces,
boundary conditions are only enforced on r-normal spatial boundaries of the domain at r = R1
and r = R2, on the parts that are wave-inflow; the description of regions on r = R1 and r = R2

2Due to axisymmetry, the same expression is obtained for ϕs 6= 0.
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that are inflow is provided in §3.2. For µ-normal boundaries, by default there are no boundary
residuals, as for element facets at µ = ±1 we have nr = nϕ̃ = 0; accordingly, the corresponding
element boundary residual is zero from (13). Finally, for ϕ̃-normal facets, R∂Qϕ̃ = 0 in (14b)
as ϕ̃ = ±π for these facets on the boundary of Ω.

In this work, the unknown intensity in each element is expressed in terms of scaled coordi-
nates r′, µ′, ϕ̃′,

r′ = r −mr

∆r
ϕ̃′ = ϕ̃−mϕ̃

∆ϕ̃

µ′ = µ−mµ

∆µ
where mr, mϕ̃, and mµ are the minimum values of the coordinates within the element and ∆r,
∆ϕ̃, and ∆µ the spans of a cubic element Q in r, ϕ̃, and µ directions, respectively. The use
of scaled coordinates (r′, ϕ̃′, µ′) ∈ [0, 1] prevents ill-conditioning problems that can arise if r, φ̃,
and µ are directly used to interpolate the solution within elements.

The discrete solution for element Q, IhQ, is interpolated by the tensorial product monomials
of order pr, pµ, and pϕ̃, in r, µ and ϕ̃, respectively, and is given by,

IhQ(r′, µ′, ϕ̃′) =
pr∑

i=0

pϕ̃∑

j=0

pµ∑

k=0
aijkQ r′iϕ̃′jµ′k, (15)

where the coefficients aijkQ are the unknowns for element Q. Note that IhQ is zero outside the
element Q. In general, for example in the context of a p-adaptive scheme, each space-angle
element Q can have its distinct orders (pr, pϕ̃, pµ). However, this option is not practiced in the
numerical studies presented in §4 and a constant polynomial order p := pr = pϕ̃ = pµ is used
for all directions.

The discrete solution Ih is obtained by multiplying the interior residual (10) and boundary
residual (11) by weight functions Î and integrating them over the interior and boundary of
elements, respectively. The discrete form of this weighted residual statement for an arbitrary
element Q ∈ Ω is,

∫

Q
ÎQ

(
sin θ cos ϕ̃

∂IhQ
∂r
− sin θ sin ϕ̃

r

∂IhQ
∂ϕ̃

+ βIhQ − κIb − S(r, µ, ϕ̃)

− σs
4π

∫ π

−π

∫ 1

−1
Ih(r, µ′, ϕ̃′)Φ(µ, ϕ̃, µ′, ϕ̃′)dµ′dϕ̃′

)
rdrdµdϕ̃

+
∫

∂Qr
ÎQ
[
sin θ cos ϕ̃(I∗ − IhQ)

]
nrrdµdϕ̃+

∫

∂Qϕ̃
ÎQ
[
− sin θ sin ϕ̃(I∗ − IhQ)

]
nϕ̃drdµ = 0. (16)

Since a Bubnov Galerkin method is used, the weight functions, ÎQ, are taken from the basis
functions of the discrete solution ÎhQ, equal to monomials r′iµ′jϕ̃′k for 0 ≤ i ≤ pr, 0 ≤ j ≤ pϕ̃,
and 0 ≤ k ≤ pµ, within the element Q and zero outside. The global coupling between different
angle ranges µ ∈ (µj , µj+1), j ∈ {0, · · · ,m−1} and ϕ̃ ∈ (ϕ̃k, ϕ̃k+1), k ∈ {0, · · · , l−1} arises from
the triple phase function integral in (16) or boundary conditions, such as reflective boundary
condition, that can couple all angles at r = R1 and r = R2; cf. (5).

3 Implementation
3.1 Discontinuous Galerkin implementation
The implementation of the RTE is based on a general purpose C++ software code for the solu-
tion of discontinuous Galerkin methods. This software was originally designed for the solution of
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causal Spacetime Discontinuous Galerkin (cSDG) methods for elastodynamics [52], advection-
diffusion equation [53], and electromagnetics [54], just to name a few. The cSDGmethod directly
discretizes space and time with simplicial elements that satisfy a special causality constraint.
The weak enforcement of the jump conditions between interior and target fluxes on the bound-
aries of elements provides unique opportunities to model complex interface matching problems;
see for example [55, 56, 57]. However, these facet terms require more general modeling of inte-
gration cells capable of integration of coincident interior and facets cells for interface problems
[58], facet and cofacet neighborhood information, and computational geometry operations.

We have used the existing functionalities of the cSDG software for the implementation of
general RTEs. Specifically, the support for coupling of space with other coordinates (time
in aforementioned references) simplified the implementation of space-angle coupled elements.
However, a major overhaul of the software and implementation of a new geometry library
(GMeshing) was required to analyze space-angle elements used for the RTE. To implement
general RTEs, the software supports the extrusion of a 1D to 3D spatial domain, discretized
by simplicial elements, into arbitrary number of extrusions in angle or other coordinates. For
example, in fig. 3, 1D simplicial spatial elements (lines) on the left are extruded first to the 9
once-extruded simplicial elements (squares) in the r−ϕ̃ plane and next to twice-extruded simpli-
cial elements (cubes) in Ω. Some specific challenges with this implementation included setting
neighborhood information (facets and cofacets in spatial and extrusion directions), formation
and processing of integration cells, and computational geometry information of the extruded
cells. Moreover, for angle integration terms in (3) and (5) additional neighborhood information
between space-angle cells and their corresponding base spatial elements, e.g., elements Q and
Qx in fig. 3, and integration routines were required. The software architecture of GMeshing
and this expanded finite element DG module are expected to be discussed in more detail in
subsequent publications.

3.2 Method of characteristic
The method of characteristic is implemented in Matlab and C++ to visualize the solution
and compare the results with the DG method. The RTE formulation with or without angular
integration terms (emission term and scattering term) can be modeled with this method. The
forward and backward implementations of this method are discussed next.

3.2.1 Forward scheme

Characteristics corresponds to the path of radiation rays that go through the disk depicted in fig.
1. According to (9), each characteristic is invariant to µ. This implies that the characteristics
remain in the r−ϕ̃ plane and that the characteristic lines coincide for all r−ϕ̃ planes at different
µ values. All of the characteristics starting at the inflow boundary on the inner wall eventually
reach the outflow boundary on the outer wall. However, the characteristics starting at the outer
wall end at either the inner wall or the outer wall. These inflow and outflow boundaries are
shown by red and blue, respectively, in fig. 5. This is because in a disk-like medium some inflow
rays on the outer wall intersect the outer wall and some reach the inner wall.

To calculate the radiation intensity field, the domain is first discretized into N r− ϕ̃ planes
for µk ∈ {µ1, ..., µN}. The characteristic lines and other quantities on the kth r − ϕ̃ plane
are decorated with the left superscript k, corresponding to µk. For example, the characteristic
lines on the kth plane are klj for j ∈ {1, 2, . . . ,M} where M is the number of characteristic
lines considered on this plane and j is the index of characteristic line. As shown in fig. 5,
the characteristic lines start from points on the inflow boundaries of the domain, that is ϕ̃ ∈
[−π/2, π/2] at r = R1 the inner wall and ϕ̃ ∈ [−π − π/2] ∪ [π/2, π] at r = R2 the outer wall.
Finally, each characteristic line klj is discretized into segments separated by points kpij , with
i being the index of points on this line, as shown in the figure. Thus, the radiation intensity
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at the end of the segment point, kpi+1
j , along characteristic, klj , is calculated by forward Euler

scheme derived from (8),

|V |
kIi+1
j − kIij

∆l = kS̆ij , k ∈ {1, . . . , N}, j ∈ {1, . . . ,M}, (17)

where kS̆ij is the source term at point kpi+1
j and ∆l =

√
∆r2 + ∆ϕ̃2 is the distance of the points

kpij and kpi+1
j with relative positions ∆r and ∆ϕ̃ in r and ϕ̃ directions, respectively. This ODE

starts from initial condition kI0
j at the first point of characteristic klj on the corresponding

inflow boundary; cf. fig. 5.
If angle coupling exists (with angular integration terms in (3)), an iterative scheme is needed

to update the total source term, kS̆ij . The trapezoidal rule is used to approximate the integrals
over the angle at kpij . Since all characteristics overlap each other over µ direction, no inter-
polation of solutions is needed in this direction and a trapezoidal rule is employed for angle
integrations in µ direction. For example, the two points kpij and k−1pij are shown for the inte-
grals in µ at pij location in r−ϕ̃ planes in fig. 5. However, the solutions for solid angle integration
along ϕ̃ need to be interpolated from existing solutions at points kpij . The trapezoidal rule based
on the interpolated solutions is used for the ϕ̃ direction integrals. The iterations start with an
initial guess, e.g., the solution with no angular integration, and continues until the intensity at
all points converges.

Figure 5: Schematic of the discrete set of r − ϕ̃ planes, characteristic lines, and points for
numerical solution of the method of characteristics.

3.2.2 Backward scheme

A backward scheme is preferred if the solution is sought on a structured grid. The domain is
discretized into a structured cube with points kqı = (rı, ϕ̃, µk), where rı ∈ {r0, r1, ..., rM}, ϕ̃ ∈
{ϕ̃0, ϕ̃1, ..., ϕ̃L}, and µk ∈ {µ0, µ1, ..., µN}. Since the RTE is a linear differential equation, the
path of a characteristic line passing through a point, both forward and backward, is independent
of the solution of radiation intensity along its path. This is reflected in the independence of the
increments of the characteristic path on solution I in (9). Accordingly, the backward path of
a characteristic passing through a grid point kqı, shown in green in fig. 5, can be determined
by (9), without having the solution of radiation intensity along its path (shown in dashed line).
Once the starting point on the inflow boundary of the domain, shown by kq̄ı, is determined,
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the initial condition along this determined characteristic path is obtained from the boundary
condition. Next, a forward Euler integration scheme similar to (17) can be used to determine
the solution at kqı from the boundary condition at kq̄ı. When angular integration terms in (3)
are nonzero, an iterative solution scheme similar to that described in §3.2.1 is used; the initial
solution (guess) corresponds to the solution with zero angle integral terms and at each iteration
source term and radiation intensity are updated until the differences of radiation intensities of
two successive solutions is below a user specified tolerance at all grid points.

The backward scheme has several advantages. First, the structured points kq̄ı can coin-
cide with quadrature points of a DG method discretization. This enables the computation of
the error between discrete DG solution and a solution represented by this backward method
of characteristics. The latter solution can be considered as the (exact) reference solution as
long as sufficiently small ∆l is chosen for the integration of solution in (17). Second, since a
structured grid is used in all directions, the points in ϕ̃ direction also coincide; thus, unlike the
forward scheme in §3.2.1 there is no need to interpolate the solution in ϕ̃ direction when angular
integration terms are nonzero. Third, as will be discussed in §4.2, cf. fig. 8, the characteristic
lines are sparse in certain parts of the domain. Using a backward scheme ensures that the
solution can be represented by uniform resolutions in all directions. However, it is noted that
the backward scheme is more expensive as for each point, the solution along one characteristic
is required. In contrast, in forward scheme, the solution along each characteristic line represents
many solution points.

4 Numerical examples
In this section, the DG method is first verified for problems with exact smooth solutions; the
MMS is used in §4.1 to first capture polynomial solutions that belong to discrete solution space
and next obtain the convergence rate of the DG method. A furnace radiation problem for which
closed form analytical solution does not exist is studied in §4.2. The method of characteristics is
used to verify the DG method for this problem and demonstrate the form of characteristics for
this axisymmetric RTE formulation. Finally, a blackbody emission problem and an anisotropic
scattering problem are presented in §4.3.

4.1 Method of manufactured solution
The MMS is used to validate formulation and implementation of the DG RTE method. In the
MMS, a function IM is chosen to satisfy the RTE,

I(r, µ, ϕ̃) = IM(r, µ, ϕ̃). (18)

The source term in (3) is determined such that IM satisfies this equation. Accordingly, source
term, specifically denoted by SM for the MMS, is obtained by plugging (18) in the RTE to
obtain,

SM = sin θ cos ϕ̃∂I
M

∂r
− sin θ sin ϕ̃

r

∂IM

∂ϕ̃
+ βIM − κIb

− σs
4π

∫ π

−π

∫ 1

−1
IM(r, µ′, ϕ̃′)Φ(µ, ϕ̃, µ′, ϕ̃′)dµ′dϕ̃′. (19)

Conversely, if the RTE problem is solved with the source term (19) and boundary conditions
consistent with IM on the inflow parts of the spatial boundary of domain at R1 and R2, the
function IM is recovered as the exact solution of the RTE (3). In discrete setting, if the
manufactured solution IM belongs to the space of finite element solution, i.e., when it is a
polynomial of order equal or less than that used to interpolate Ih in (15), the exact solution
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IM is recovered. Otherwise, Ih asymptotically converges to IM as finer meshes (h-refinement)
or higher order polynomials for Ih (p-enrichment) are used. The former and latter cases are
applied for problems in §4.1.1 and §4.1.2, respectively.

4.1.1 Validation study for polynomial exact solutions

Figure 6: Validation of the DG RTE method by the MMS for second order polynomial in space
and angle for IM. The contour plots in r− ϕ̃ plane are sliced in µ direction at µ = −0.5, 0, 0.5.

Two cases are conducted for validating the formulation and implementation in an annulus
with inner and outer radii of R1 = 1 and R2 = 2, respectively. In the first case, the MS solution
IM is given as a second order polynomial in both space and angle,

IM(r, µ, ϕ̃) = r2µ2 + r2ϕ̃2 − rµ2 − rϕ̃2 + µ2ϕ̃2 + µϕ̃+ 1
2 ϕ̃

2. (20)

The phase function Φ and black-body radiation Ib are equal to zero. The DG method recovers
the exact solution to to within machine precision. Several contour plots of the solution in r− ϕ̃
planes are shown in fig. 6. In the second case, the MS solution IM remains the same as in
the first case in (20). The black-body radiation Ib = (1/4π)

∮
4π Ids′ is assumed at radiative

equilibrium; cf. (2). The phase function is set to Φ = 1 for an isotropic scattering. Again, the
DG method recovers the exact solution to within machine precision.

4.1.2 Convergence study

The following harmonic function is used as the manufactured solution to perform a convergence
study for the proposed DG method,

IM(r, µ, ϕ̃) = sin (πr) sin (πµ) sin (πϕ̃). (21)

The L2 norm of the point-wise error ε between the discrete and manufactured solution is
used to characterize the numerical error,

Point-wise error : ε(r, µ, ϕ̃) = Ih(r, µ, ϕ̃)− IM(r, µ, ϕ̃), (22a)

L2 norm of error : L2(ε) =
√∫

Ω
|ε|2dΩ. (22b)

Since polynomials are used for the discrete solution in (15), Ih cannot exactly represent
the manufactured solution (21) and the numerical error is nonezero for all element sizes and
polynomial orders. The spatial domain corresponds to an annulus with inner and outer radii
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Figure 7: Convergence study of the DG RTE solution for the harmonic manufactured solution.
The asymptotic convergence rate βp = p+ 1 is achieved as h→ 0 for p = 0 to p = 3.

of R1 = 1 and R2 = 2, respectively. The coarsest mesh used for convergence study contains
four elements in space, corresponding to uniform element size of h = (R2 − R1)/4 = 0.25.
In angle directions, this mesh contains four elements in ϕ̃ and µ directions, corresponding to
inter-element values of ϕ̃ ∈ {−π,−π/2, 0, π/2, π} and µ ∈ {−1,−0.5, 0, 0.5, 1}, respectively. For
convergence analysis this mesh is uniformly refined in all directions by factors of 2. For example,
for the next coarsest mesh h = 0.125 and 8 elements are used in each angle direction. Uniform
space and angle polynomial orders of p = 0 to p = 3 are used for the analysis. The convergence
rate of the discrete solution is obtained by determining the slope βp of the logarithm of L2 norm
of error L2(ε) versus the logarithm of the element size h. As shown in fig. 7, the asymptotic
convergence rate of βp = p+ 1 is achieved for polynomial order p as h→ 0.

4.2 Verification of the DG method with the method of characteristics
A practical problem of radiation in an annular furnace with inner and outer radii of R1 = 1
and R2 = 2 is considered with inflow boundary conditions I(R1) = I(R2) = 1. There are no
angular coupling integrals in (3) as κ = 0 and σs = 0 . The extinction coefficient is β = 0.01.
Since this problem does not have a closed-form exact solution, the method of characteristics is
used to verify the DG solution.

For the method of characteristic, it is worth mentioning that a sparse zone exists along
ϕ̃ = ±1

2π. While in this case 200 characteristic lines are used in each r − ϕ̃ plane, the solution
points are still very sparse in the regions shown in fig. 8. To better show this sparsity and
noting the symmetry of the solution with respect to ϕ̃ = 0 plane, the solution I is only shown
on the top half of the domain. As done for the next results, one can simply increase the number
of characteristics lines to reduce the sparsity. However, for comparison of the two methods,
it is noted that the DG method does not have this issue, since the solution is interpolated by
polynomials over the entire space-angle domain.

The results for both methods are shown in fig. 9 in sliced r− ϕ̃ planes for µ = −0.5, 0, 0.5.
These planes are chosen since characteristic lines stay in them. For the method of characteristics,
∆l = 0.01 and 2000 characteristic lines are used in each r−z plane to generate the plots; cf. §2.2
and §3.2. As shown in fig. 9(a), there are two lines of strong discontinuity in I that coincide for
all values of µ. The distance between these lines decreases and the discontinuity jump increases
as r increases toward R2 = 2. The cause of the change of the curvature of the discontinuity line
and the form and width of high gradient solution features along r is the appearance of r in the
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Figure 8: The results of the method of characteristic in a r − ϕ̃ plane, where ϕ̃ < 0 shows the
characteristics in black and ϕ̃ ≥ 0 shows the characteristics with the intensity field. The red
arrows point to regions where characteristic lines are sparse.

denomonator of the equation for dϕ̃ in (9). As shown in fig. 9(b), the DG method is capable
to accurately capture this discontinuity without much numerical oscillations around these lines
with a moderately refined mesh of 32 × 32 × 32 elements and p = 3. It is emphasized that
one main advantage of DG methods over continuous finite element methods is their superior
performance for problems with jumps and high gradient solutions features. Due to the structure
of characteristic lines, such jumps in the solution are common for the axisymmetric RTE. This
example demonstrates the advantage of using a DG method for this RTE formulation.

To compare the results of the DG method and the method of characteristics, a convergence
study is performed in terms of the L2 error norm between the two solutions. That is, the high
resolution solution of the method of characteristics plays the role of exact solution IM in (22).
The convergence rate of βp ≈ 0.4 is not improved by increasing the polynomial order. The limit
in the convergence rate of the solution is due to the strong discontinuity lines that pass through
finite elements. While the resolution improves, the transition region along the discontinuity
lines which is proportional to the element size becomes narrower.

4.3 Benchmark problems between two concentric cylinders
4.3.1 Blackbody emission

The problem of a gray gas at radiative equilibrium between two concentric cylinders with infinite
height is conducted and compared with the numerical results by Loyalka [40] which are accurate
enough to be considered as the benchmark solution [2]. The ratio of inner and outer radii of the
walls takes the values R1/R2 = 0.1, 0.5, 0.9. Moreover, the optical thickness, τ =

∫ r
0 β(r)dr,

also changes in different cases by changing the extinction coefficient β. The inner surface is hot
(T1 = 2000K) and highly reflective (ε1 = 0.1); the outer surface is relatively cool (T2 = 400K)
and is a strong absorber (ε2 = 0.9). Inside the concentric cylinder, the medium is gray and
non-scattering (σs = 0).

The nondimensional radiative heat transfer, Ψ, is defined as [40],

Ψ = q(τ1)
J1 − J2

, (23)

where q(τ1) is the radiative flux density at r = R1 (τ = τ1). The radiative flux density at radius
r is obtained by the inner product of the surface normal nx and heat flux vector q(r),

q(r) = q(r) · nx, where q(r) =
∮

4π
I(r, ŝ)ŝds′. (24)
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(a) Method of characteristics

(b) DG method

Figure 9: Contour plots of radiation intensity for the problem in §4.2 for two different solution
methods.

Figure 10: Convergence study of the DG RTE solution with respect to a high resolution reference
solution obtained by the method of characteristics.

Since only inner surface is concerned, the surface normal nx = (−1, 0, 0) is used for r = R1 in
(er, eϕx , ez) coordinate system; cf. fig. 1.

The values J1 and J2 are the radiosity of the walls at radii R1 and R2, respectively. They
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Figure 11: Nondimensional radiative heat transfer, Ψ, between concentric cylinders at radiative
equilibrium against the optical thickness, τ2 − τ1, at different radius ratio, R2/R1. The solid
lines are the numerical solution presented by Loyalka [40]; the hollow shapes (squares, circles
and triangles) are the solutions by the DG method.

account for non-black emission and diffuse reflection. For wall w ∈ {1, 2}, Jw has the relation
with net radiative flux qw = q(Rw) [40],

qw = εw
1− εw

(πIbw − Jw), (25)

where the black-body radiation at wall w, denoted by Ibw, is obtained from (2). Since qw and
Ibw are computed from the solution to RTE and εw is the emissivity of wall w, Jw can be
obtained from (25). Once J1 and J2 are obtained, Ψ is computed from (23).

A 16× 16× 16 grid with polynomial order p = 1 is used for DG solutions. As shown in fig.
11, the DG results agree well with the numerical results by Loyalka [40]. It is observed that
the nondimensional radiative heat transfer decreases with the increase of the optical thickness
as well as the increase of the radius ratio. The effect of the radius ratio can be contributed
to the fact that as R1/R2 → 0 less energy is reflected from the inner boundary and most of
the energy exits from the outer boundary. It is noticed that the difference between DG and
reference solution is slightly larger for thinner optical thicknesses and the difference has overall
lower values for smaller R1/R2 ratios. This may be contributed to numerical integration errors
and other approximations involved in the solution method employed in [40].

Figure 12: Contour plot of radiation intensity of the benchmark problem for R1/R2 = 0.5 and
τ2 − τ1 = 10.
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Comparing to the previous example in fig. 9(b), where strong discontinuity is inside the do-
main along the characteristic lines r sin ϕ̃ = ±1, the results with diffuse reflection on boundaries
and emission in the domain seem much smoother; this is shown in fig. 12 for a particular case
of R1/R2 = 0.5 and τ2 − τ1 = 10. In general, the angle integrations through scattering and
black-body radiation terms, as well as emissive and diffusive terms on the boundary of domain
in (5), smoothen the solution around the characteristic jump lines in fig. 9(b). These angle
integral terms improve the accuracy and order of convergence of the DG method.

4.3.2 Anisotropic scattering

In this case, the enclosure of two infinite concentric cylinders with radii of R1 = 1 and R2 = 2
contains an anisotropic scattering medium with the cold inner wall with I(R1) = 0 and isotropic
incidence on outer wall with I(R2) = 1. The extinction, absorption, and scattering coefficients
are β = 0.1, κ = 0, and σs = 0.05, respectively. The Rayleigh scattering is used, where phase
function Φ(µ, ϕ̃, µ′, ϕ̃′) is given,

Φ(µ, ϕ̃, µ′, ϕ̃′) = 3
4

{
1 +

[√
(1− µ2)(1− µ′2) cos (ϕ̃− ϕ̃′) + µµ′

]2
}
. (26)

(a) Solutions with anisotropic scattering.

(b) Difference between the scattering solutions and the
non-scattering solutions.

Figure 13: Contour plots of radiation intensity for the problem in §4.3.2 for µ = 0 for two
different methods. The left and right figures correspond to the solutions by the DG method
and the method of characteristics (MoC), respectively.

A 64×64×64 grid with polynomial order p = 2 is used for DG solutions. In the meanwhile,
a 201× 201× 201 structured grid with ∆l = 0.01 is used for the backward iterative scheme of
the method of characteristics; cf. §3.2.2. It took the iterative scheme 221 steps to converge with
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a relative error of 1× 10−12. For the solutions presented here, the solution cost of the method
of characteristics is about three times of that of the DG method. However, it is noted that due
to several differences in the programming practices and languages of the two implementation
and the limited set of comparisons of the two methods, this cost comparison is not expected to
be thorough and conclusive. The results for both methods, as shown in fig. 13(a), indicate a
strong discontinuity which is similar to the results in §4.2. Again, the DG method accurately
captures the discontinuity without much numerical oscillations along the jumps, with coarser
grid compared to the method of characteristics. It is noted that this problem was also solved
with coarser resolutions by the DG method. The transition region where the discontinuity in
the solution is represented by a rapid solution change in general is proportional to the element
size; that is, as the element size tends to zero, the discontinuity is more accurately captured.
Figure 13(b) shows the results of the difference between the solutions with anisotropic scattering
and the solutions without scattering ,i.e., σs = 0 for the two methods. It provides a better
perspective of how the medium scatters the radiation energy. As shown, strong scattering is
observed near the outflow outer boundary where rays intersect with the outer wall. Moreover,
the backward scattering is weaker from the outer wall towards the inner wall.

5 Discussion and conclusions
A discontinuous Galerkin method for the solution of steady state radiative heat transfer between
concentric cylinders, described by the one-dimensional RTE in cylindrical coordinates, was
presented. The application of the discontinuous Galerkin method is described for problems in
which radiation intensity varies over one dimension in space and two dimensions in angles. In
this application, the RTE is spontaneously discretized over the space and angle by the DG
method.

To discretize the angular directions, the spatial elements are extruded in two angular di-
rections. This allows the basis function to be high order not only in space but also in angle.
This aspect improves the convergence rate as shown in §4.1.2 and [38], compared to the hybrid
methods that are capable of changing the order of accuracy only in space, such as hybrid (SN )
FEM [17, 18, 19, 20], (SN ) DG method [23, 24, 25, 26, 27, 28], and other hybrid methods
[33, 34, 59, 60] which use a piece-wise constant or a delta function in angle. Specific to this
RTE formulation, the discretization of the dI/dϕ̃ term in (3) with finite difference in discrete
ordinate method poses new implementation challenges and introduces additional discretization
errors. For the DG formulation, the RTE is fully discretized in space and angle, so no additional
scheme is needed to model this derivative term.

The use of DG formulation has several advantages. First, similar to continuous FEMs com-
plex spatial geometries can be modeled with arbitrarily high order of accuracy in space. Second,
inter-element continuity constraint is enforced weakly using the target flux I∗. In contrast, for
the RTE formulation presented herein, a continuous space-angle FEM formulation would enforce
a continuity constraint along the µ direction. This continuity condition is nonphysical when
there are no angle-integration terms in (1) and (5). Moreover, the use of upstream values for I∗
results in very accurate representation of solution, consistent with the characteristic structure
of problem; as discussed DG methods have a superior performance to continuous FEMs in cap-
turing jumps in solution, such as those observed in r− ϕ̃ planes in fig. 9. Third, as discussed in
detail in [38], while both DG in angle and spherical harmonic method can achieve arbitrary high
order of accuracy in angle, the former has a better performance for problems with concentrated
point or line sources.

Several numerical examples were presented for this DG formulation. The convergence study
was conducted for both smooth and discontinuous solutions. While for the latter, the conver-
gence rate is relatively poor as shown in fig. 10, the space-angle DG method is still able to
accurately capture discontinuities in the solution in r − ϕ̃ planes. Moreover, the benchmark

18

                  



problem from [40] shows the high accuracy of the DG method for different optical thicknesses
and ratios of the inner to outer radii. The last problem shows that the DG has a good flexibility
for solving the RTE with complex properties, e.g., scattering in an anisotropic medium.

To verify the results by the DG solver, the method of characteristic is employed for the one-
dimensional cylindrical RTE. The method of characteristic performs better, especially, with
respect to the strong discontinuity, since the intensity is calculated along the corresponding
characteristics without the jumps involved for individual line solutions. However, the diffi-
culty in modeling complex geometries (boundary condition particularly) and the low iteration
convergence rate when angular integration terms are involved are its disadvantages. The tran-
sition region at the discontinuity, for example in fig. 13, is inevitable for the DG and other
finite element / volume methods when the discontinuity passes through the finite elements /
volumes. Still, DG methods generally outperform other mesh-based methods. For example,
as demonstrated in [15] continuous FEMs can suffer even worse numerical oscillations around
discontinuities. We have discussed these advantages of the DG method for a planar-parallel
RTE formulation [38] using a problem with a concentrated source term.

As an extension to this work, it is noted that the discontinuity can be exactly tracked with
DG methods if it can be aligned with the element boundaries. Moreover, adaptive schemes can
accurately and efficiently capture such discontinuities in narrower bands. Finally, DG methods
are very flexible to change the element order (p-enrichment) or size (h-adaptive), without the
need of transition elements used in adaptive continuous FEMs. We plan to extend the novel
adaptive operations proposed in [61] from space and spacetime to the space-angle RTE problem.
Another important extension to this work is the formulation of an iterative solution of the RTE
when angular integration terms are present. In this case, the system stiffness matrix is very
dense and even for moderate resolutions of the grid in space and angle, this matrix may not fit
in computer RAM memory. We are currently working on an iterative scheme that each time
only one slab of the domain in r− ϕ̃ plane is solved. This would enable solving the problem in
§4.3.2 with much higher resolutions.
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