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ABSTRACT

Maintaining material inhomogeneity and sample-to-sample
variations is crucial in fracture analysis, particularly for quasi-
brittle materials. We use statistical volume elements (SVEs)
to homogenize elastic and fracture properties of ZrB2-SiC, a
two-phase composite often used for thermal coating. At the
mesoscale, a 2D finite element mesh is generated from the mi-
crostructure using the Conforming to Interface Structured Adap-
tive Mesh Refinement (CISAMR), which is a non-iterative algo-
rithm that tracks material interfaces and yields high-quality con-
forming meshes with adaptive operations. Analyzing the finite
element results of the SVEs under three traction loadings, elastic
and angle-dependent fracture strengths of SVEs are derived. The
results demonstrate the statistical variation and the size effect be-
havior for elastic bulk modulus and fracture strengths. The ho-
mogenized fields are mapped to macroscopic material property
fields that are used for fracture simulation of the reconstructed
domain under a uniaxial tensile loading by the asynchronous
Spacetime Discontinuous Galerkin (aSDG) method.

INTRODUCTION

Fracture and damage in materials often initiate from mi-
crostructural defects. In ductile materials energy dissipation
mechanisms in the bulk such as plasticity can significantly re-
distribute stress field, thus reducing the effect of the most critical
microstructural defects. On the other hand, due to the lack of sig-
nificant bulk energy dissipation mechanisms, quasi-brittle mate-
rials are very sensitive to such defects [1, 2]. Variations on crack
paths under the same problem set-up [3] and ultimate strength /
fracture energy uncertainties [4,5] are some of the consequences
of this sensitivity. The so-called size effect, the decrease in the
mean and variation of fracture strength as a specimen size in-
creases, can also be explained by the random distribution of
flaws.

The explicit models directly incorporate defects larger than
certain size in the analysis. However, their application is lim-
ited to very small space and time scales due to their high com-
putational demand. On the other hand, the implicit approaches
only incorporate the effect of defects in an averaged, statistical,
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or homogenized sense. For example, the Weibull’s weakest link
model [6, 7] can qualitatively explain the size effect. However,
the weakest link model is not appropriate for 2D and 3D prob-
lems and phenomenological models such as the Weibull model
lack a direction connection to material microstructure.

Homogenization approaches address the aforementioned
concerns, in that they derive the macroscopic properties of a ma-
terial by solving an underlying problem in a Volume Element
(VE). Beyond numerous works in elastic regime, [8–11] have
used homogenization to calibrate certain fracture models. A Rep-
resentative Volume Element (RVE) refers to a VE that is appre-
ciably larger than the microscale features yet smaller than the
overall domain dimensions, so that the assignment of VE ho-
mogenized values to a macroscopic continuum model is well jus-
tified [12]. Because of the large size of RVEs and the practical
convergence of a homogenized property to a unique value, the
spatial inhomogeneity and sample to sample variation are lost
when RVEs are used. On the other hand, Statistical Volume El-
ements (SVEs) are small enough to maintain material inhomo-
geneity and statistical variation among different realizations. The
SVEs are used for modeling statistical elastic [13–15] and frac-
ture [16] responses. For a more detailed overview of RVEs and
SVEs, the reader is referred to [12, 17].

The authors have shown that incorporating statistical varia-
tions and inhomogeneity of fracture strength is critical in prob-
lems that lack macroscopic stress concentration points, e.g., frac-
ture under dynamic compressive loading [18] and fragmentation
studies [19]. However, due to the use of the Weibull model there
was no direct connection to material microstructure. We em-
ployed SVEs containing microcracks [20, 21] and circular inclu-
sions [22]. However, first the construction of microcracks or in-
clusions was not based on real material microstructures; second,
very simplified fracture models were used at the microscale, in
that microcracks did not interact in the former and could only
nucleate at inclusion-matrix interfaces in the latter works.

One approach to overcome the challenges associated with
the realistic modeling of material microstructures is to imple-
ment an appropriate reconstruction algorithm, such as descriptor-
based algorithms [23–25]. In such algorithms, an optimization
phase is often utilized to replicate a set of statistical descrip-
tor functions such as the size distribution and spatial arrange-
ment of particles in the microstructure [26–28]. Several cor-
relation function-based algorithms [29, 30] have also been in-
troduced for reconstructing material microstructures using var-
ious techniques, such as those relying on random sequential ad-
sorption [31–33] and Voronoi tessellation [34–36]. Simulating
the desired spatial arrangement of inclusions in such reconstruc-
tion techniques often requires implementing computationally de-
manding algorithms such as the Monte-Carlo method [37, 38]
and pixel switching [39, 40]. Recently, Yang et. al [25] have
introduced a new animation-inspired algorithm for the virtual re-
construction of various heterogeneous material microstructures.

In addition to a low computational cost and the ability to han-
dle arbitrary-shaped inclusions, this algorithm provides an ex-
plicit representation of materials interfaces using Non-Uniform
Rational B-Splines (NURBS) [41], which highly facilitates sub-
sequent finite element (FE) analyses.

Creating high-quality conforming meshes with proper el-
ement shapes and aspect ratios is another major challenge to-
ward the FE modeling of problems with complex morpholo-
gies [42]. Among popular mesh generation techniques for the
treatment of such problems we can mention the Delaunay tri-
angulation [43], advancing front [44, 45], quadtree/octree-based
techniques [46, 47], and the marching cubes [48, 49]. However,
the iterative smoothing/optimization process involved in such al-
gorithms for improving element aspect ratios in problems with
intricate geometries could be computationally demanding and
even fail to converge in some case scenarios. FE-based enriched
methods such as CutFEM [50], eXtended FEM (XFEM) [51,52],
and the Hierarchical Interface-enriched FEM (HIFEM) [53, 54]
have also been utilized to make the simulation process indepen-
dent of the underlying mesh structure. However, there are chal-
lenges associated with the implementation of such algorithms for
modeling interface problems, such as the ill-conditioning of the
stiffness matrix and a loss of accuracy in recovery of the gradient
field along material interfaces, where the latter could consider-
ably deteriorate the fidelity in predicting stress concentrations in
multiphase problems.

In order to address the limitations outlined above in the im-
plementation of mesh generation algorithms and enriched FE-
based techniques, Soghrati et al. [55, 56] have recently intro-
duced a non-iterative meshing algorithm that preserves the most
salient advantages of both approaches. Similar to the former
class of methods and regardless of the complexity of geome-
try, CISAMR enables the use of a simple structured mesh for
discretizing the domain. However, rather than implementing en-
richment functions to capture the discontinuous phenomena, it
can non-iteratively transform this initial structured mesh into a
high-quality conforming mesh using customized versions of h-
adaptivity, r-adaptivity, and sub-triangulation algorithms [55].
The CISAMR algorithm for modeling 3D problems is presented
in [57] and has previously been implemented for modeling a va-
riety of materials with complex geometries, including fiber rein-
forced composites [58] and DNA-origami nanostructures [59].

In this manuscript, the microstructure reconstruction algo-
rithm presented in [25] is employed to build a large microstruc-
tural model of a ZrB2-SiC particulate composite. CISAMR is
then employed to automatically build FE models and simulate
the micromechanical behavior of hundreds of SVEs of this mate-
rial with various sizes and under the traction boundary condition.
In addition, detailed FE analyses are performed at the microscale
and unlike [22] fracture can nucleate in the matrix or inclusion
phases or the interfaces between the two.

The macroscopic fracture simulations are performed by the
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asynchronous discontinuous Galerkin (aSDG) method [60]. The
convergence of the crack path for a deterministic problem is
demonstated in [19]. For stochastic models, our preliminary re-
sults demonstrate the objectivity of various macroscopic mea-
sures such as fracture energy and ultimate load for the ten-
sile fracture problem presented in the numerical results section.
These features ensure the accuracy of macroscopic fracture sim-
ulations.

FORMULATION
Microstructure reconstruction and meshing

Figure 1 illustrates a 800 µm× 800 µm RVE of the ZrB2-
SiC particulate composite with a volume fraction of Vf = 20%
that will be analyzed in this work. The NURBS-based recon-
struction algorithm presented in [25] is employed to synthesize
this microstructural model, which consists of 6654 embedded
particles. For this purpose, the scanning electron microscope
(SEM) images provided in [61] are processed and segmented to
extract morphologies of a representative set of particles, which
are parameterized in terms of NURBS functions and stored in
a shape library. The imaging data are also used to determine
the size distribution and spatial arrangement of particles, which
are statistically characterized using a normal distribution func-
tion and a two-point correlation function, respectively. A hier-
archical bounding box based packing algorithm [25] is then em-
ployed to initially pack more than 20,000 particles in the domain.
We then implement a GA-based optimization framework to se-
lectively eliminate some of this particles to simulate the target
two-point correlation function, resulting in the non-uniform spa-
tial arrangement of particles shown in Fig. 1.

The homogenization-based fracture analysis presented in
this manuscript is conducted based on the FE simulation of mi-
cromechanical behavior of hundreds of SVEs of the ZrB2-SiC
RVE depicted in Fig. 1. This in turn requires the automated con-
struction of appropriate conforming meshes for each heteroge-
neous SVE, which is accomplished using CISAMR [55]. For ex-
ample, 4,096 distinct FE models are created for non-overlapping
SVEs with the length of L = 12.5 µm. All these meshes are
created by starting with an initial structured mesh with the ele-
ment size of h = 1 µm, which is overlapped on each SVE of the
original microstructural model. The CISAMR non-iterative algo-
rithm then transforms this background mesh into a high-quality
conforming mesh by applying 2 levels of refinement along ma-
terial interfaces. A small portion of one of the resulting meshes
generated using this algorithm is depicted in Fig. 2.

Loading of SVEs
To calculate elastic stiffness tensor and angle-dependent

fracture strength, we load the SVEs with traction boundary con-
dition. The average macroscopic stress tensor, in Voight notation,

FIGURE 1. VIRTUALLY RECONSTRUCTRED ZrB2-SiC RVE
(V f = 20%).

FIGURE 2. PORTION OF THE CONFORMING MESH GENER-
ATED USING CISAMR FOR DISCRETIZING ONE OF HE SVES OF
THE MICROSTRUCTURAL MODEL SHOWN IN FIGURE 1.

is denoted by,

S̄ = [S̄xx, S̄yy, S̄xy]
ᵀ (1)

where ᵀ is the transpose operator. For a homogenization analysis
with stress boundary conditions, three load cases are considered
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with tractions on the boundaries that correspond to nonzero S̄xx,
S̄yy, and S̄xy, respectively. Figure 3 shows the microscopic σ11
distribution inside an SVE, due to the macroscopic traction load-
ing with nonzero S̄xx value. By computing the average Voight
strains for each of these loadings, the 3×3 stiffness matrix C is
computed for each SVE. The bulk modulus κ is then computed
from C by considering a hydrostatic pressure loading. As will be
discussed next, microscopic stresses in the matrix and inclusion
and at the interface between the two are used to derive angle-
dependent fracture strengths. Often stress concentration points
around matrix and inclusion interfaces, as those shown in Fig. 3,
are the sites that determine fracture
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FIGURE 3. FE APPROXIMATION OF σ11 IN THE MATRIX OF
ONE OF THE SVES WIH L = 50 µm USING THE TRACTION
BOUNDARY CONDITION SIMULATING A MACROSCOPIC NOR-
MAL STRESS APPLIED IN THE x-DIRECTION.

Failure criterion
Three different failure modes are considered for the com-

posite. The matrix and inclusions are isotropic elastic media,
whose failure are characterized by an isotropic Mohr-Coulomb
model. The microscopic uniaxial/hydrostatic tensile and uniaxial
compressive strengths are denoted by sα

n , sα
t , respectively, where

α ∈ {M, I} corresponds to “Matrix” and “Inclusion” phases. The
third failure mode corresponds to the interface between the ma-
trix and inclusion, where it is assumed that fracture occurs when
tensile stress at any point of the interfaces in an SVE reaches the
interface strength si

n, where i refers to the interface phase.
The macroscopic tensile and shear strengths are obtained by

finding the average stresses that correspond to macroscopic ten-
sile and shear loadings at an arbitrary angle θ . Figure 4 shows

FIGURE 4. SCHEMATIC OF AN SVE AND THE x′,y′ AXES FOR
FAR-FIELD LOADING RELATIVE TO GLOBAL x,y AXES.

the global {x,y} and local {x′,y′} coordinate systems used for
applying the macroscopic BCs and computing strengths for an-
gle θ , respectively. For the rotated coordinate system {x′,y′}, the
only nonzero values of S̄y′y′ = 1 and S̄y′x′ = 1 correspond to pure
tensile and shear loadings at the angle θ . The Mohr circle is used
to find the linear superposition of components of S̄ in Eqn. (1)
that generate such macroscopic tensile and shear loadings [62].
The microscopic stresses in the matrix, inclusion, and interface
are computed by the same superposition of their corresponding
values from the three traction loadings in Eqn. (1).

The macroscopic tensile strength at angle θ , s̃n(θ), is ob-
tained by finding the load factor s = s̃n(θ) relative to the solution
for S̄y′y′ = 1, such that the most critical point in the matrix, inclu-
sion, or the interfaces in an SVE fails. The shear strength s̃t(θ)
is obtained by the same process, where the load factor is com-
puted relative to the solution for S̄y′x′ = 1. The association of
the strength of the SVE with the load at which the overall fail-
ure of SVE initiates is motivated by [63, 64] where it is shown
that under quasi-static and low to medium loading rates, ultimate
strength of a volume element is very close to the stress level at
which failure initiates.

NUMERICAL RESULTS
Statistical analysis of SVEs

For the analysis ZrB2-SiC SVEs the following material
properties are used for the ZrB2 matrix: Young’s modulus
EM = 524 GPa, Poisson’s ratio νM = 0.2, tensile strength sM

n =
381 MPa, and compressive strength sM

c = 2.5 GPa. The proper-
ties of inclusion phase SiC are: Young’s modulus EI = 415 GPa,
Poisson’s ratio ν I = 0.2, tensile strength sI

n = 359 MPa, and com-
pressive strength sI

c = 2.1 GPa. The volume fraction of SiC in an
800 µm×800 µm RVE is 20%. The interface tensile strength is
taken to be 80% of the minimum of the tensile strengths of ma-
trix and inclusion phases, which is a reasonable assumption for
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composites of this type.
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FIGURE 5. ANGULAR VARIATION OF NORMAL STRENGTH
s̃n(θ) AND SHEAR STRENGTH s̃t(θ) FOR ONE 12.5 µm×12.5 µm
SVE.

The angular variation of normal fracture strengths s̃n(θ) and
shear strength s̃t(θ) are shown for a sample 12.5 µm×12.5 µm
SVE. First, it is observed that the tensile strength is higher for
all angles of loading. This is expected as for both the matrix
and inclusion phases, the tensile strength is higher than the shear
strength. Second, the angular variation of strengths over angle is
smaller than about 7% of their corresponding mean angular val-
ues. That is, even at such small SVE sizes, the fracture strength
response is not highly anisotropic. As a result, in the following
the conservative minimum strengths over all angles of loading,
that is min(s̃n) and min(s̃t), are used to characterize the strengths
of an SVE.

To investigate the SVE to SVE variation of fracture strength,
the probability density function (PDF) of min(s̃n) is shown in
Fig. 6. First, it is observed that both the strengths with the high-
est probability and the mean values decrease as the SVE size in-
creases. Second, for the smallest SVE size (12.5 µm×12.5 µm),
a secondary bump appears in the PDF. The strengths around this
bump are close to the tensile strength of the matrix sM

n . The ap-
pearance of this bump is similar to the transition of the PDF of
elastic stiffness from a bimodal to a hump-shaped PDF in [65],
where at very small sizes we can encounter SVEs only comprised
of the matrix material.

The PDF for the minimum shear strength min(s̃t) is shown
in Fig. 7. A similar trend to min(s̃t) is observed here with the
difference that shear strengths are smaller than tensile strengths.
This is expected as for both phases, the same holds true for mi-
croscopic strength values.

FIGURE 6. PDF OF MINIMUM TENSILE STRENGTH min(s̃n),
FOR DIFFERENT SVE SIZES.

FIGURE 7. PDF OF MINIMUM SHEAR STRENGTH min(s̃n),
FOR DIFFERENT SVE SIZES.

To better understand the effect of the size of SVE on its prop-
erties, a size effect plot of the bulk modulus is presented in Fig.
8. The mean value and min/max values of the bulk modulus are
shown by solid and dashed lines, respectively. For larger SVEs
the variation of its bulk modulus decreases. As the SVE size in-
creases, the variations of κ are expected to tend to zero and its
value to converge to the RVE limit bulk modulus. Another in-
teresting observation is having very little variation in the mean
value of κ across different SVE sizes. We use this feature to
choose a homogeneous bulk modulus for macroscopic fracture
simulations reported below.

The size effect for the minimum tensile strength (over all
angles), min(s̃n), is shown in Fig. 9. This figure demonstrates
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FIGURE 8. SIZE EFFECT PLOT FOR BULK MODULUS κ . THE
MEAN AND RANGE (MINIMUM AND MAXIMUM) ARE SHOWN
BY SOLID AND DASHED LINES.

FIGURE 9. SIZE EFFECT PLOT FOR MINIMUM TENSILE
STRENGTH min(s̃n).

the typical size effect response expected for fracture strength, in
that the mean of fracture strength decreases as the SVE size in-
creases; see for example [66]. At the same time, the variation
of fracture strength significantly decreases as the SVE size in-
creases. The decrease in the mean value is explained by the fact
that as the SVE size increases there is a higher likelihood for hav-
ing more critical stress concentration points within an SVE. The
decrease of variation is contributed to the higher population of
stress concentration points within SVEs as their size increases.

Macroscopic fracture analysis

For the macroscopic fracture analysis, the 800 µm×800 µm
RVE is subdivided by 32× 32 = 1024 25 µm× 25 µm SVEs.
For each SVE the conservative tensile strength min(s̃n) is used
in the material input mesh; the values between the grid points
are linearly interpolated. For elastic properties, a homogeneous
and isotropic material with a bulk modulus corresponding to the
mean value shown in Fig. 8 is used. The use of an isotropic ma-
terial is motivated by the fact that various measures of material
anisotropy, cf. e.g., [67], classify the material with less than about
3% of anisotropy (results not provided for brevity). The use of
homogeneous elastic properties is motivated by the fact that the
inhomogeneous nucleation and propagation of cracks due to vari-
ations of fracture strengths play a more critical role than stress
redistribution due to variations of bulk modulus for the simple
tensile test considered herein.

For the analysis of macroscopic elastodynamic problem
the the asynchronous spacetime discontinuous Galerkin (aSDG)
method [60] is used. The minimum tensile and shear strength
values, min(s̃n) and min(s̃t), are used in the definition of a scalar
effective traction [68] that in our formulation drives crack nu-
cleation, propagation, and damage evolution on fracture inter-
faces [19]. Due to the dynamic loading of the domain and brittle
nature of fracture, complex fracture patterns are expected for this
problem. As a result, we use general spacetime mesh adaptive
operations [69], dual error indicators in the bulk and on fracture
surfaces [70] to ensure the accuracy of the solution. Moreover,
the fracture specific mesh adaptive operations [71] accommodate
crack propagation in any desired direction. The latter is critical
in capturing realistic fracture patterns.

Figure 10 shows the results for a simple tensile loading on
the RVE where the left boundary is fixed and the right bound-
ary is pulled with the normal velocity that ramps up from zero
to its terminal value v̄ = 4.5 m/s in 35 ns. The value of v̄ is
chosen such that the corresponding tensile loading carried by the
wave inside the domain is slightly lower than the mean value
of min(s̃n) over the RVE. If the fracture strength was a uniform
value, the entire domain would have failed along vertical lines
as the wave propagated inward. However, the inhomogeneity of
fracture strength results in the nucleation of cracks from the weak
points of the domain and the type of fracture pattern observed in
the figure. For example, in Fig. 10(b) a few cracks are nucleated
behind the wave front and stress field is relaxed around them.
Figure 10(c) shows the instant where the elastic wave reaches
the far left boundary, having created the main crack nucleation
sites behind. The final fracture pattern is shown in Fig. 10(d). In
all the figures the strain energy density is shown on the deformed
geometry, where blue to red colors correspond to zero to high
values.
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(a) TIME t = 26 ns. (b) TIME t = 40 ns. (c) TIME t = 96 ns. (d) TIME t = 960 ns.

FIGURE 10. SOLUTION VISUALIZATION FOR A TENSILE LOADING ON A DOMAIN WITH SVE-HOMOGENIZED FRACTURE
STRENGTH.

CONCLUSIONS

We used the CISAMR method to generate a volume element
based on realistic distribution of inclusions in a ZrB2-SiC com-
posite. We subdivided this volume element to SVEs of differ-
ent sizes and derived their elastic properties by applying traction
boundary conditions. Furthermore, by the superposition of the
results corresponding to these distinct boundary conditions, we
derived the angle-dependent tensile and shear fracture strengths
of the SVEs.

The analysis of the SVEs revealed interesting results. First,
the variation of both bulk modulus and fracture strengths de-
creased when larger SVEs were used. Second, the mean values
of fracture strengths mildly decreased by the increase of the SVE
size. Third, the mean value of the bulk modulus was quite sta-
ble across all SVE sizes. We used the SVE-based homogenized
fracture strengths in a macroscopic fracture simulation where the
original volume element was subject to a dynamic tensile load-
ing; as expected, cracks only nucleated from the weak sites of
the material and the inhomogeneity prevented simultaneous fail-
ure of material as tensile wave front passed through the domain.
Future work will further study the correlation of elastic and frac-
ture properties and the effect of the length at which homogeniza-
tion occurs, i.e., the SVE size, on macroscopic fracture measures
such as ultimate load and fracture energy.

ACKNOWLEDGMENT

Abedi, Bahmani, and Clarke acknowledge partial support
for this work via the U.S. National Science Foundation (NSF),
CMMI - Mechanics of Materials and Structures (MoMS) pro-
gram grant number 1538332. Soghrati and Yang acknowledge
the funding from the National Science Foundation under Grant
No. 1608058, as the support from the Ohio State University Sim-
ulation Innovation and Modeling Center (SIMCenter).

REFERENCES

[1] Rinaldi, A., Krajcinovic, D., and Mastilovic, S., 2007. “Sta-
tistical damage mechanics and extreme value theory”. In-
ternational Journal of Damage Mechanics, 16(1), pp. 57–
76.

[2] Genet, M., Couegnat, G., Tomsia, A., and Ritchie, R.,
2014. “Scaling strength distributions in quasi-brittle materi-
als from micro- to macro-scales: A computational approach
to modeling nature-inspired structural ceramics”. Journal
of the Mechanics and Physics of Solids, 68(1), pp. 93–106.

[3] Al-Ostaz, A., and Jasiuk, I., 1997. “Crack initiation and
propagation in materials with randomly distributed holes”.
Engineering Fracture Mechanics, 58(5-6), pp. 395–420.

[4] Kozicki, J., and Tejchman, J., 2007. “Effect of aggregate
structure on fracture process in concrete using 2D lattice
model”. Archives of Mechanics, 59(4-5), pp. 365–84.

[5] Yin, X., Chen, W., To, A., McVeigh, C., and Liu, W. K.,
2008. “Statistical volume element method for predicting
microstructure–constitutive property relations”. Computer
methods in applied mechanics and engineering, 197(43-
44), pp. 3516–29.

[6] Weibull, W., 1939. “A statistical theory of the strength of
materials”. R. Swed. Inst. Eng. Res., p. Res. 151.

[7] Weibull, W., 1951. “A statistical distribution function of
wide applicability”. Journal of Applied Mechanics, 18,
pp. 293–297.

[8] Taylor, L. M., Chen, E.-P., and Kuszmaul, J. S., 1986.
“Microcrack-induced damage accumulation in brittle rock
under dynamic loading”. Computer Methods in Applied
Mechanics and Engineering, 55(3), pp. 301 – 320.

[9] Homand-Etienne, F., Hoxha, D., and Shao, J., 1998. “A
continuum damage constitutive law for brittle rocks”. Com-
puters and Geotechnics, 22(2), pp. 135–151.

[10] Shao, J., and Rudnicki, J., 2000. “A microcrack-based con-
tinuous damage model for brittle geomaterials”. Mechanics
of Materials, 32(10), pp. 607–619.

7 Copyright c© 2018 by ASME



[11] Lu, Y., Elsworth, D., and Wang, L., 2013. “Microcrack-
based coupled damage and flow modeling of fracturing evo-
lution in permeable brittle rocks”. Computers and Geotech-
nics, 49, pp. 226–44.

[12] Ostoja-Starzewski, M., 2002. “Microstructural random-
ness versus representative volume element in thermome-
chanics”. Journal of Applied Mechanics-Transactions of
the ASME, 69(1), pp. 25–35.

[13] Baxter, S. C., and Graham, L. L., 2000. “Characterization
of random composites using moving-window technique”.
Journal of Engineering Mechanics, 126(4), pp. 389–397.

[14] Tregger, N., Corr, D., Graham-Brady, L., and Shah, S.,
2006. “Modeling the effect of mesoscale randomness on
concrete fracture”. Probabilistic Engineering Mechanics,
21(3), pp. 217–225.

[15] Segurado, J., and LLorca, J., 2006. “Computational mi-
cromechanics of composites: The effect of particle spatial
distribution”. Mechanics of Materials, 38(8), pp. 873–883.

[16] Koyama, T., and Jing, L., 2007. “Effects of model scale and
particle size on micro-mechanical properties and failure
processes of rocks—a particle mechanics approach”. Engi-
neering Analysis with Boundary Elements, 31(5), pp. 458–
472.

[17] Ostoja-Starzewski, M., 2006. “Material spatial random-
ness: From statistical to representative volume element”.
Probabilistic Engineering Mechanics, 21(2), pp. 112 –
132.

[18] Abedi, R., Haber, R., and Elbanna, A., 2017. “Mixed-mode
dynamic crack propagation in rocks with contact-separation
mode transitions”. In Proceeding: 51th US Rock Mechan-
ics/Geomechanics Symposium. ARMA 17-0679.

[19] Abedi, R., Haber, R. B., and Clarke, P. L., 2017. “Effect of
random defects on dynamic fracture in quasi-brittle materi-
als”. International Journal of Fracture, 208(1-2), pp. 241–
268.

[20] Clarke, P., and Abedi, R., 2017. “Fracture modeling of
rocks based on random field generation and simulation of
inhomogeneous domains”. In Proceeding: 51th US Rock
Mechanics/Geomechanics Symposium. ARMA 17-0643.

[21] Clarke, P., Abedi, R., Bahmani, B., Acton, K., and Bax-
ter, S., 2017. “Effect of the spatial inhomogeneity of frac-
ture strength on fracture pattern for quasi-brittle materi-
als”. In Proceedings of ASME 2017 International Me-
chanical Engineering Congress & Exposition IMECE 2017,
p. V009T12A045. IMECE2017-71515.

[22] Acton, K., Baxter, S., Bahmani, B., Clarke, P., and Abedi,
R., November 3-9, 2017. “Mesoscale models characteriz-
ing material property fields used as a basis for predicting
fracture patterns in quasi-brittle materials”. In Proceed-
ings of ASME 2017 International Mechanical Engineering
Congress & Exposition IMECE 2017, pp. V009T12A061,
6 pages. IMECE2017-71500.

[23] Xu, H., Dikin, D. A., Burkhart, C., and Chen, W., 2014.
“Descriptor-based methodology for statistical characteriza-
tion and 3d reconstruction of microstructural materials”.
Computational Materials Science, 85, pp. 206–216.

[24] Xu, H., Liu, R., Choudhary, A., and Chen, W., 2015. “A
machine learning-based design representation method for
designing heterogeneous microstructures”. Journal of Me-
chanical Design, 137(5), p. 051403.

[25] Yang, M., Nagarajan, A., Liang, B., and Soghrati, S., 2018.
“New algorithms for virtual reconstruction of heteroge-
neous microstructures”. Computer Methods in Applied Me-
chanics and Engineering, 338, pp. 275–298.
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