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SUMMARY

Applications where the diffusive and advective time scales are of similar order give rise to advection—
diffusion phenomena that are inconsistent with the predictions of parabolic Fickian diffusion models.
Non-Fickian diffusion relations can capture these phenomena and remedy the paradox of infinite propaga-
tion speeds in Fickian models. In this work, we implement a modified, frame-invariant form of Cattaneo’s
hyperbolic diffusion relation within a spacetime discontinuous Galerkin advection—diffusion model. An A-
adaptive spacetime meshing procedure supports an asynchronous, patch-by-patch solution procedure with
linear computational complexity in the number of spacetime elements. This localized solver enables the
selective application of optimization algorithms in only those patches that require inequality constraints
to ensure a non-negative concentration solution. In contrast to some previous methods, we do not modify
the numerical fluxes to enforce non-negative concentrations. Thus, the element-wise conservation proper-
ties that are intrinsic to discontinuous Galerkin models are defined with respect to physically meaningful
Riemann fluxes on the element boundaries. We present numerical examples that demonstrate the effective-
ness of the proposed model, and we explore the distinct features of hyperbolic advection—diffusion response
in subcritical and supercritical flows. Copyright © 2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Advection—diffusion systems arise in numerous science and engineering applications. Examples
include transport of diffusing solute species in a fluid flow [1, 2], two-phase fluid flows in het-
erogeneous porous media [3], fluid flow in oil reservoirs [4], and drift-diffusion in semiconductor
devices [5, 6]. Numerical simulation of these systems poses special challenges, especially in the
advection-dominated limit where some form of stabilization is required to suppress spurious oscil-
lations around high-gradient features while avoiding excessive numerical dissipation. Among the
many stabilization techniques suitable for finite element methods, we mention streamline upwind
Petrov—Galerkin (SUPG) methods [7] and Galerkin least squares methods [8]; see [9] for a survey
of the extensive literature on this topic. In general, however, these methods do not ensure mono-
tonicity, can be overly diffusive, and may generate solutions that exhibit nonphysical oscillations or
violate critical constraints against negative solution values. Thus, research on improved numerical
methods for advection—diffusion problems continues.
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Diffusive processes are most often modeled by Fick’s law [10],
q=-KV¢ (1)

in which q is the diffusive flux and K is the diffusivity tensor. After accounting for the equation
of continuity, the balance law for a species with concentration ¢ is then governed by the evolution
equation,

D¢
- _V. 2
Dr q, ()
in which
D 0
— = — -V 3
Y Py +a 3)

is the material derivative written in terms of a material velocity field, a. Combining (1) and (2)
generates a parabolic model. For non-vanishing material velocity, the second term in the material
derivative operator (3) generates an advective transport term, resulting in a parabolic advection—
diffusion equation.

The parabolic diffusion model (2) suffers the well-known infinite velocity of propagation
paradox [11]. Nonetheless, it provides a good match with experimental observations in many appli-
cations where the time scales associated with diffusion are much smaller than the time scales
associated with advective transport and other processes in the system dynamics. On the other hand,
it is critical to model finite propagation velocities in systems where the diffusion time scale is not
well separated from the other time scales in the system. Examples include diffusion in crystalline
solids [12], dispersion in amorphous materials [13], blood flows [14], and initial dispersion of pol-
lutants into the atmosphere, rivers, and groundwater [15]. This class of problems motivates the
numerical method proposed in this work.

Various constitutive relations have been proposed to model finite-velocity diffusive pro-
cesses [16]. To this end, one of the simplest extensions of Fick’s law is the Maxwell-Cattaneo
relation [11], given by

0
(1 + AOE) q=—-KV¢, @)

in which the relaxation constant, Ao > 0, is the time lag required to establish steady conditions after
a gradient is imposed across a volume element [17]. Combination of (4) and (2) yields a hyperbolic
system with finite propagation velocities.

Although (4) resolves the infinite propagation velocity paradox, Christov and Jordan demonstrate
in [18] that it violates the Galilean invariance principle in advection—diffusion problems; i.e., when
a # (. They propose a revised Maxwell-Cattaneo relation in which a material derivative replaces
the temporal partial derivative in (4),

D
(1 + )Loa) q = —-KVé, )

and show that the resulting hyperbolic system exhibits finite propagation velocities and is Galilean-
invariant. We refer to (5) as the modified Maxwell-Cattaneo (mMC) model and use it as our
reference hyperbolic model for advection—diffusion from here on.

This paper is concerned with a finite element method for solving hyperbolic advection—diffusion
problems, such as (5). A survey of the literature on numerical methods that address hyperbolic
diffusion, for both pure diffusion [14, 19-21], and combined advection—diffusion [1, 22, 23], can
be found in [24]. For the pure diffusion case, numerical models based on discontinuous Galerkin
(DQG) finite element methods, [22, 25], are most relevant to the method proposed here. In particular,
the adaptive spacetime DG method described in [26] is a direct antecedent to the method advanced
in this work. For the mMC advection—diffusion problem, the DG method in [22] is the closest
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HYPERBOLIC ADVECTION-DIFFUSION WITH NON-NEGATIVITY CONSTRAINT 965

precedent to the method proposed in this work. It combines a nonadaptive DG spatial discretization
with upwind numerical fluxes in a Runge—Kutta DG method [27, 28].

Hyperbolic advection—diffusion models may predict non-smooth wavefronts, particularly for
advection-dominated flows. In these cases, the numerical analyst is often left with a choice between
overly diffuse resolutions of these wavefronts and sharper renderings accompanied by spurious
numerical oscillations and undershoots that can generate negative concentrations in some regions.
In the latter case, and depending on the application, violations of the non-negativity condition
may result in algorithmic failure, for example, in advection—diffusion—reaction models or in highly
anisotropic media; cf. [29]. Thus, we are interested in methods that enforce the non-negativity
condition without increasing diffusion.

Various schemes have been proposed to generate non-negative, stable solutions in a variety of
applications. Shu and coworkers developed flux limiters to ensure non-negative cell averages of
density and pressure in finite volume and DG approximate solutions of the Euler equations [30-32].
Berthon and Marche [33], Xing et al. [34], Parent [35], and Balsara [36] used similar ideas to
enforce non-negative solutions for the shallow water, Euler, and magneto-hydrodynamic equations
as well as other conservation laws. Suresh [37] obtained second-order accurate positive solutions by
restricting the reconstructions to cell averages of first-order neighbors.

There are some drawbacks to flux-limiting methods. They use expanded, non-compact stencils
in their reconstructions and cannot always handle boundary fluxes accurately and consistently. In
hyperbolic problems, any modification of numerical fluxes away from their Riemann values com-
promises the physical significance of the cell-wise conservation properties available in finite volume
and discontinuous Galerkin methods. These schemes might not be suitable for use in /-adaptive
solvers because average enforcement of non-negativity on a current mesh does not ensure that posi-
tive cell averages are preserved under a projection onto a refined mesh. This can lead to catastrophic
failure in models where maintaining a non-negative solution is critical to algorithmic stability.

Several recent papers propose optimization techniques as a means to enforce the non-negativity
condition as a formal inequality constraint on the solution. Lipnikov et al. [38] propose a finite
volume method for advection—diffusion problems in which a constrained optimization program
determines a minimal nonlinear correction to the advective fluxes to ensure a non-negative solu-
tion. Wang and coworkers [39] combine this approach with piecewise-linear reconstructions on
polygonal cells to enforce monotonicity. Liska and Shashkov [40] enforce a maximum principle on
second-order elliptic problems by solving a constrained optimization problem using piecewise lin-
ear finite elements and linear constraints. This approach has been extended to anisotropic diffusion
problems in a mixed formulation [29] and to diffusion-controlled reactive systems on unstructured
grids [41, 42]. These methods are often implemented with linear finite element bases. This ensures
that solution extrema lie at cell vertices, where it suffices to enforce point-wise constraints.

In this paper, we propose an adaptive spacetime DG (SDG) finite element method for hyperbolic
advection—diffusion systems, such as the mMC system in (5), that enforces a non-negativity condi-
tion on the solution. We use a particular SDG methodology that is fully discontinuous in both space
and time and is implemented on unstructured, asynchronous spacetime grids that conform to a so-
called causality constraint determined by the characteristic structure of the underlying hyperbolic
system; see [26] for an application of this SDG methodology to hyperbolic diffusion; precedents
can be traced back to Lowrie et al. [43], Falk and Richter [44], and Yin et al. [45]. Part of our pur-
pose is to demonstrate the advantages of this computational technology in the context of hyperbolic
advection—diffusion. These favorable properties have been demonstrated through a combination of
analysis and extensive numerical testing on a variety of applications [26, 46-53]. They include
the following:

e Unconditional stability for linear systems, such as (5). Falk and Richter prove stability of SDG
solutions for linear, symmetric hyperbolic systems in [44], and Lowrie et al. report similar
findings in [43] for linear systems of conservation laws, such as the one in this work.

e Compact computational stencils that do not expand with higher-order approximations; cf.
discussion in first paragraph in Section 4.

e Element-wise conservation with respect to computed Riemann fluxes.
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e Linear computational complexity in the number of spacetime elements.

e Computational efficiency increases with polynomial order for suitably smooth solutions—an
uncommon result among finite element methods.

e Asynchronous solution structure that does not propagate time-step size limits, in contrast to
conventional time-marching schemes and most synchronous, slab-based SDG methods.

e Continual adaptive remeshing in which incremental solutions, error indicators, and remeshing
execute locally at a common granularity. Mesh coarsening and connectivity changes are han-
dled geometrically in spacetime to eliminate errors incurred in other adaptive methods when
projecting the solution from an old mesh to a new one.

e Embarrassingly parallel structure for high-performance computing.

In addition, we propose a new method that enforces the non-negativity condition locally, in only
those elements where the constraint is active. Similar to previous methods, we use constrained opti-
mization methods to enforce non-negative solutions. However, in contrast to several works cited
earlier, we do not limit or modify the computed Riemann fluxes so as to preserve the physical and
mathematical significance of the SDG method’s element-wise conservation property. Instead, we
directly constrain the discrete solution to non-negative values. We believe this new approach has
applications to other examples of constrained hyperbolic systems beyond the present non-negative
hyperbolic advection—diffusion problem.

The following section reviews key aspects of the SDG finite element method and the differen-
tial forms notation we use to obtain an objective, coordinate-free formulation of conservation over
spacetime control volumes in 3. Section 3 continues with the formulation of the SDG implementa-
tion of the mMC advection—diffusion model and details the new method for enforcing non-negative
concentration solutions. Section 4 presents numerical examples that demonstrate the performance
of the proposed algorithm and explores aspects of the physical response predicted by the mMC
advection—diffusion model in subcritical and supercritical flows. Finally, we present conclusions
and directions for future research in Section 5.

2. SPACETIME DISCONTINUOUS GALERKIN FINITE ELEMENT METHOD AND
DIFFERENTIAL FORMS NOTATION

This section surveys the adaptive spacetime meshing/solution scheme and the differential forms
notation we use to develop the frame-independent SDG formulation presented in 3. This material
has been published previously in detail. We provide here only a high-level summary to provide the
necessary background for understanding the application of the SDG methodology to advection—
diffusion systems and the new method for enforcing non-negativity constraints. The interested
reader is encouraged to consult the cited publications for detailed coverage of these topics.

2.1. Asynchronous spacetime meshing and solution

Our spacetime discontinuous Galerkin solver works with asynchronous, unstructured spacetime
meshes, such as the simple example in E! x R in the top part in Figure 1. The inclined arrows indi-
cate characteristic directions (wave trajectories). In this example, waves travel to the right and left
at equal, finite speeds. The SDG solution scheme imposes a causality constraint on the mesh geom-
etry that requires each element facet to be faster (i.e., closer to horizontal) than the fastest wave
trajectory. Thus, all element facets are space-like in the terminology of relativity theory, and infor-
mation flows in only one direction across each element facet. Accordingly, the later facets of a given
element are purely outflow surfaces, and the earlier facets are purely inflow. This structure ensures
that the solutions in the two shaded elements depend only on the solutions in the earlier elements
adjacent to their respective inflow facets. These earlier solution fragments, however, do not depend
on the solutions in the shaded elements.

This asymmetric dependency between solutions in adjacent elements generates a partial element
ordering by which the global solution can be computed locally, one element at a time. For exam-
ple, consider the four level-1 elements along the initial-time boundary. The solution in each of these
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Figure 1. Spacetime discontinuous Galerkin solution scheme on causal spacetime mesh in E! x R (top).
Global coupling in non-causal mesh (bottom). Reproduced from [53].

depends only on the initial data along each element’s bottom facet and, in the case of the left-
most and rightmost elements, on prescribed boundary data. The level-1 element solutions can be
computed locally and in parallel if multiple computational cores are available. Any level-2 element
can be solved as soon as its immediate level-1 neighbors have been solved, even if other level-
1 elements remain unsolved. Thus, causal SDG meshes enable asynchronous, element-by-element
solutions with linear computational complexity in the number of spacetime elements (assuming the
computational cost of solving each element is roughly the same).

The structured mesh at the bottom in Figure 1 covers an individual slab in a synchronous
SDG scheme, corresponding to a single time step in a conventional time-marching scheme. The
characteristic directions indicate symmetric coupling between solutions in adjacent elements. This
dependency spreads globally, so that all elements in the slab must be solved simultaneously. This
global coupling is entirely an artifact of the synchronous, non-causal discretization; it does not
reflect the mathematical structure or physical response of the underlying hyperbolic model.

In practice, we replace the individual elements in Figure 1 with small clusters of simplex elements
called patches and only subject the exterior patch facets to the causality constraint. Because inter-
element boundaries within a patch may be non-causal, we must solve all the elements in each patch
simultaneously. We implement this in an advancing-front meshing/solution procedure. In each step,
the Tent Pitcher algorithm [46, 49] advances a single vertex in time to define a local update of the
space-like front mesh. The causality constraint limits the vertex’s maximum time increment. After
each update of the front mesh, we construct a small mesh of spacetime simplices to cover the region
between the old and new fronts; we call this small collection of simplices a patch. We immediately
solve each new patch as a local finite element problem, store the solution, and then locally update
the current front mesh to the patch’s outflow facets. We repeat this patch-by-patch meshing/solution
procedure at front vertices that are local minima in time until the entire spacetime analysis
domain is solved.

Global coupling significantly increases computational complexity and limits scalability in tradi-
tional time-marching schemes and synchronous SDG models relative to our asynchronous causal
scheme. Notably, the growth in computational complexity associated with high-order basis functions
dominates the improvement in convergence rate in most globally coupled finite element methods, so
lower-order elements are favored. In contrast, numerical efficiency increases with polynomial order
in the asynchronous SDG solution scheme until the storage required to solve a single patch exceeds
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the available CPU cache.* In the context of high-performance computing, the causal SDG solution
scheme supports scalable parallel implementations of combined patch-wise meshing and solution
steps, while its asynchronous structure is well suited to very large-scale implementations.

2.2. h-adaptive meshing

The local spacetime structure of the SDG solver enables a powerful approach to dynamic adap-
tive meshing [54]. An error indicator is computed for each new patch solution. If the error is
acceptable, the patch solution is accepted and stored for use as inflow data for subsequent patches.
If the error is too large, the patch is rejected, and the solver passes a demand for mesh refine-
ment to the meshing code. Thus, only a small amount of computational effort is discarded relative
to discarding an entire slab or time step in other methods. If the error is too small, the patch
is accepted, and a request for subsequent mesh coarsening is issued. The adaptive Tent Pitcher
software responds to refinement demands by refining the front mesh before restarting the patch-
generation procedure. This, in combination with the causality constraint, produces simultaneous
spatial and temporal refinement. For example, two bisection refinements of segments in the old
front mesh generate the smaller shaded element in Figure 1. This refined element has both a
smaller spatial diameter and a shorter duration, indicating simultaneous adaptive refinement in space
and time.

In higher spatial dimensions, we implement common adaptive meshing operations, such as
vertex-deletion, edge flips, and vertex motion for mesh smoothing or feature tracking, as spacetime
patches with special configurations that conform to the old front mesh on inflow facets and the new
front mesh on outflow facets; see [26] for details. This eliminates the need for expensive and error-
prone solution projections, as required in conventional adaptive meshing procedures. In particular,
projection errors do not compromise the faster convergence rates of higher-order finite elements.
We achieve strong, dynamic refinement because adaptive meshing and the patch-wise solutions are
implemented as local operations that share a common fine granularity within the SDG algorithm.
This contrasts with conventional adaptive methods, where remeshing is typically a global operation
that is invoked only after several time steps have been computed.

2.3. Differential forms and exterior calculus

In the case of our hyperbolic advection—diffusion model (5), the SDG solution procedure involves
solving a system of conservation laws locally on a series of spacetime patches. Rather than work
with spatial control volumes, we formulate the conservation relations directly on spacetime control
volumes defined by the elements that comprise each patch. In the case of our unstructured causal
meshes, this requires a means to express Stokes theorem in a format where surface integrals sum
over d-manifolds with arbitrary orientation in spacetime, where d is the spatial dimension. Recall-
ing the absence of a natural metric between space and time in classical mechanics, we observe that
no objective definition of an inner product exists for spacetime vectors in E¢ x R. Accordingly,
no frame-invariant definition for spacetime normal vectors is available for describing fluxes across
surfaces of spacetime control volumes.

Differential forms and the exterior calculus on manifolds support objective, coordinate-free
statements of the Stokes theorem that do not involve normal vectors. In fact, this approach gener-
ates elegant conservation statements from which jump conditions, essential to any discontinuous
Galerkin model, emerge in a simple and natural manner. A complete exposition of forms and
the exterior calculus is beyond the scope of this paper. However, we next present a brief discus-
sion of our representation of spacetime fluxes using forms and recall the elegant statement of the
Stokes theorem in exterior calculus. This background should be sufficient for understanding the
main ideas in this paper, but the interested reader can find more complete developments of differ-
ential forms and exterior calculus in [55-57] and our application of these tools in formulating SDG
models in [26].

¥Beyond that point, numerical efficiency may drop as the cache-miss rate grows with polynomial order.
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Let D € M := E¢ x R be the spacetime manifold under study. Although we use direct
notation in our formulation, for the purposes of this discussion, we introduce a basis for vectors,
{ei,e,}fl=1, in which the Cartesian spatial basis, e;, spans Ed, and e; is the temporal basis for R.
The dual basis for covectors is denoted as {ei,e’}flzl. We use A and d to denote the exterior
product and exterior derivative operators. Our standard basis for the differentials in 1—forms is
{dx', d t}fl=1. Top (d + 1)-forms, involving spacetime differential volumes, have the singleton
basis, 2 = dx' A ... Adx? A dt. We also require d-forms to represent differentials on surfaces
of spacetime volumes. Our basis for the differentials in d-forms is {*dx’, *dt}?;l, in which * is
the Hodge star operator, such that dx’ A xdx’/ = 5’]-.9, dt A xdx? = 0,dt N xdt = §2, and
dx’ axdt = 0fori, j =1, ....,d .5 For spatial dimension, d = 3, xdx' = dx2Adx3Adt, xdx? =
—dx' Adx3 Adt, *xdx® = dx' Adx? Adt,and xdt = —dx' A dx? A dx3 in which the varying
signs reflect the alternating property of exterior products. Note that xdt is a purely spatial differ-
ential volume with dimension, L3, while the xdx’ are mixed differentials in space and time with
dimension, L2T.

In conventional representations, we conceive of scalar, vector, and tensor fields as distinct math-
ematical entities from the differentials that accompany them in integrals. In forms notation, on the
other hand, the fields and differentials are unified entities in which the fields are called the coef-
ficients of the differential forms. We use bold, upright symbols to denote vector and tensor fields
and bold slanted symbols to denote differential forms. We introduce a useful d-form with covector
coefficients, xdx := e’ xdx’, and note that

d(w xdx) = Vw2 d(w xdt) = w2 (6a)
d(c-xdx) = (V-¢)2 d(c *xdt) = ¢2 (6b)
d(D xdx) = (V-D)2 d(D xdf) = D2 (6¢)

in which w and ¢ are scalar and vector fields, while D is a tensor field of order 2 or higher.
Spacetime fluxes and sources of scalar and vector conservation variables take standard forms:

F, = w *xdt +f,, - xdx Sy =s5p2 (7a)
F. =cxdf + F. »dx S.=s.2 (7b)

in which f,, and F, are spatial fluxes and s,, and s, are sources of vector and tensor conservation
variables whose respective density fields are w and c. The restriction of a spacetime flux to any
oriented, spacetime d-manifold delivers the flux of the corresponding conservation variable across
the manifold. This restriction, as it applies to the spatial flux component, replaces the contraction
of a spatial flux with a normal vector in tensorial descriptions. However, the restriction of a form to
a manifold does not involve a spacetime normal vector, so it is not affected by the lack of an inner
product on E4 x R. Thus, we obtain an objective representation for spacetime fluxes with forms that
are not available with tensorial representations.

The forms representation of spacetime fluxes leads to an elegant local statement of conservation.
Given a spacetime domain, D C E9 x R, consider any open subdomain, @ C D, with a regular
boundary, 0Q. The Stokes theorem in differential forms notation is [56]

/ w=/ do, ()
iIo) Q

in which @ is a d-form. Conservation requires that the integral on dQ of a spacetime flux, F, must
equal the integral on Q of the corresponding source, . That is, by (8) and the localization theorem,

/ F=/SVQCD<:>dF—S=00nD 9)
09 Q

$For purposes of the summation convention, the * operator lowers the indices of *dx” to subindices.
IAlthough we have constructed *dx with respect to a particular coordinate frame, it is easy to show that it is frame-
invariant.
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in which the exterior derivatives are in the sense of distributions. Combining (6), (7), and (9) leads
directly to familiar local conservation equations for vector and scalar variables:

dF, — S, =0onD = w+V-f,—s,=00nD (10a)
dF.,—S.=0onD <= ¢+ V-F.—s.=00onD (10b)

Our SDG formulation involves forms with both scalar and vector coefficients, so we extend the
usual definition of the exterior product operator to forms with vector coefficients. Let A and B be
r-forms and s-forms and a and b be covector and vector fields, all on D. Then, a4 and bB are r-
forms and s-forms with covector and vector coefficients. Their exterior product is the (r 4 s)-form
with scalar coefficients given by

ad AbB := a(b)(4 A B). (11)

3. FORMULATION

We introduce the continuum hyperbolic advection—diffusion model as a system of conservation
equations and identify the corresponding spacetime fluxes and source terms using differential forms
notation. We then introduce farget fluxes as a unified vehicle for specifying initial, boundary,
and Riemann conditions and summarize the Riemann solutions for this problem. Next, following
methods described in [26, 47], we formulate weighted residual equations and describe the SDG dis-
cretization in which the jump part of the exterior derivative operator generates jump conditions that
enforce the target fluxes. We present a new method that imposes non-negativity constraints on con-
centration solutions and describe the a posteriori error indicators that drive our s-adaptive meshing
procedure; cf. 2.2.

3.1. Continuum model

Consider the hyperbolic advection—diffusion model of [24] for mass transport of a solute species
in the presence of a known, divergence-free (incompressible) background velocity field, a(x, ¢), in
which x € E¢ denotes spatial position and 1 € R denotes time. Let u denote the solute species
concentration and q its diffusive flux. Then the system of governing equations from [24] can be
written as

u+Vu-a+V-q—s, =0, (12a)
[+ (Vga+KVu]+q=0 (12b)

in which K is a positive-definite diffusivity tensor and t is a second-order relaxation tensor

with dimensions of time. For simplicity, but without loss of generality, we assume isotropic and

homogeneous materials from here on. Thus, T = 7l and K = kI, where I is the identity tensor.
Because (12) is a hyperbolic system, the solute species has a finite speed of diffusive transport,

given by ¢ = +/k/t at all locations and in all directions. We define the dimensionless number,
H(x,t) :=l|a(x,t)|/c, and classify the flow at position x and time ¢ as

subcritical if H <1
critical if H=1 (13)
supercritical if H > 1

In subcritical regions, diffusive transport dominates, and the solute species can propagate upstream
against the flow. Upstream solute propagation is impossible in supercritical regions where advection
dominates.

We introduce a 2-tuple of conservation fields,

cu
u= {Tq}, (14)
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and assume that the material parameters t and k& are known functions of space and independent of
time. Next, we construct the corresponding 2-tuples of spacetime fluxes and spacetime sources:

. u xdt 4+ (ua + q) »dx (152)
T ltqxdt 4+ (tq ® a + uK) xdx |’ a

s
S="'02. 15b
o) (15b)

Combining (10) and (15), and recalling that a is divergence-free by assumption, we obtain a forms-
based governing system whose coefficients match and that is equivalent to (12):

u+Vu-a+V.q—sy

dF = § = {r[q+(Vq)a+KVu]+q

} 2 = {8} 2 onD. (16)

3.2. Spacetime discontinuous Galerkin finite element formulation

Let Py, be a disjoint partition of the spacetime analysis domain D into N open subdomains (space-
time elements), Qg, such that P, = {Q, }évzl. We use the mesh P, to construct a discrete
discontinuous Galerkin solution space for paired scalar and vector fields that is piecewise continuous
on D with jumps admissible across all spacetime element boundaries:

V= {w: {l’;}:v|ge7>’g;pi|gepg VQePh} (17)

in which Pg is the space of polynomial functions of order p on Q. Although we typically use r = s,
distinct polynomial orders for the scalar and vector fields are possible. We write VhQ = Vlo to
describe the continuous discrete solution space within each spacetime element, Q € Py,.

In view of the discontinuous structure of V;,, we must address both the diffuse and jump parts of
the exterior derivative operator. To this end, we introduce a target flux function, denoted as F*, on

the jump set, 7 := |J 0Q, and expand the governing system (9) as
Q€ePy

dF —-S)|p, =0
{(F*—F)|3Qg —0 YO ePy (18)
in which F|yg is the trace of F taken from the interior of Q. Through suitable selections of F*
on different parts of 7, we obtain a unified scheme for expressing initial, boundary, and Riemann
conditions.

Most discontinuous Galerkin methods enforce a single set of flux jump conditions across inter-
element boundaries, where the fluxes on opposing sides of the interface are functions of solution
traces from the adjacent elements. Equation (18), on the other hand, generates two sets of jump con-
ditions on each inter-element boundary segment. These express the differences between a common
Riemann flux, F*, and the traces of fluxes from each adjacent element. In addition to balancing
fluxes between elements, the paired jump conditions preserve characteristic structure across inter-
element boundaries, thereby improving stability and reducing numerical dissipation. Convenient
expressions for the Riemann fluxes are available for the linear conservation laws in this applica-
tion, so there is no need to introduce approximate numerical fluxes. Section 3.3 next describes the
computation of F* on the various parts of 7, including Riemann fluxes on inter-element boundaries.

System (18) leads directly to the global weighted residuals statement,

Problem 1 (Global weighted residuals statement)
For each Q € Py, findu € VhQ such that

/W/\(dF—S)—i—/ WA(F*—F)=0 Vwe (V)" (19)
Q a9

in which (th)* is a discrete vector space whose members take the form, [v p], where v and p are
scalar and covector fields on Q such that v € ”PrQ and p; € PSQ.
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The Stokes theorem and restriction of (19) to the current patch, I1, generates the weak problem
statement used in our implementation; cf. 2.1.

Problem 2 (Weak statement on current patch)
Foreach Q € I, findu € VhQ such that

—f(dW/\F-I-W/\S)—I—/ wAF*=0 Vwe(VhQ)* (20)
Q Q9
Equation (20) expands to

—/ (AvAFy,+vS,+dpAFq+p ASg)
© @1

+/ (uF;+p/\F;)=ov[v p]E(VhQ)*.
ile)

For a given Cartesian coordinate frame, we write (20) in indicial notation as
—/ {ou +vj (ua’ +q’) + pjtq’ + pjm (¢’ ™ +ukK’™) = p;q’} 2
Q
+/ {(vu* + pmtg™™) xdt + [v (u*aj + q*j) + pm (¢*"a’ + u*ij)] *dxj} (22)
0Q

=0V[v p]e(VhQ)*.

3.3. Jump conditions and target fluxes

The jump condition in (18) plays a critical role in our SDG formulation where its weak enforcement
in Problems 1 and 2 provides the coupling between solutions on adjacent patches, a means to pre-
serve the characteristic structure of our hyperbolic system across element boundaries, as well as the
weak enforcement of initial and boundary conditions. The definition and computation of the target
flux function, F *, is therefore essential to our method. In general, the value of F* depends on loca-
tion x € 0Q C J, the local orientation of 0Q, the interior and exterior traces of the SDG solution
on 7, and initial and boundary data.

The value of F* is determined at a location x € dQ by substituting target values of concentration
and diffusive flux, u* and q*, into (15a). We determine u* and q* at x as follows. We first classify
the local orientation of dQ at x as causal or non-causal according to the causality condition described
in 2.1. If the orientation is causal, we test whether it is part of the causal-inflow or causal-outflow
boundary of Q — if the temporal basis vector, e;, points toward the interior of Q it is causal-inflow,
and otherwise, causal-outflow. Thus, we have defined a disjoint partition of dQ into non-causal,
causal-inflow, and causal-outflow parts, denoted respectively as dQ", 90 and 99, such that
9Q = 09" U JQ U Q.

If x € 09, we set the target values to the corresponding interior traces from Q: u™ = u|yo and
q* = (o for all x € Q. Thus, F* = F, and the jump condition is trivially satisfied for any
solution. In other words, the solution in Q is left unconstrained along its purely outflow boundary.
If x € 9Q%, we check whether x is on the domain boundary. If x € 9D, then the values of u*
and q* are determined by specified initial data. Otherwise, X lies on an inter-element boundary, and
the target values are determined by the trace of the solution in the earlier, adjacent element. In our
patch-by-patch solution method, this neighbor element can either be part of the current patch or
part of an adjacent, previously solved patch. This assignment of target values guarantees that the
causality principle is satisfied in that characteristic information always propagates forward in time
across causal element interfaces.
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The remaining possibility is that x € dQ"¢, either on a non-causal segment of the domain bound-
ary or on a non-causal inter-element interface on the interior of the current patch. In the former case,
where x € dQ" N 9D, we compute the target values according to prescribed boundary data. The
number of prescribed solution components is determined by the local orientation of the spacetime
boundary manifold and the characteristic velocities of waves traveling normally to the interface at
x. For simplicity and without loss of generality, we describe boundary conditions only for verti-
cal facets; i.e., space—time facets that are parallel to the time axis. This is sufficient for our present
purposes because the boundaries in the numerical examples are all stationary.

The characteristic wave velocities are computed as eigenvalues of the Jacobian tensor containing
the partial derivatives of the spatial surface flux vector with respect to the conserved variables [58].
Let n be the unit normal in space directed outward from Q at X, and consider a spatial rectangular
Cartesian coordinate frame aligned with the normal, such that e; = n. The characteristic variables
in this local coordinate system are (v — q1/c, ¢2, ...., 44, U + q1/c), and the corresponding e; com-
ponents of the wave velocities are (a1 — ¢, a; (repeated d — 1 times), a; + ¢). Inflow characteristics
are identified by negative normal wave velocities. For a well-posed problem, the number of inde-
pendent boundary conditions must equal the number of inflow characteristics at x. This system of
boundary relations must determine the inflow characteristic variables as functions of the outflow
characteristic variables and prescribed data.

The magnitude and direction of the normal flow velocity, a;, influences the number of bound-
ary conditions that must be specified at any (x,¢) € dQ" N dD. For example, when a; > 0 and
la1| < c, only the first characteristic wave velocity, a; — ¢, is negative, and accordingly, only the
first characteristic variable, u — ¢1/c, is inflow. Thus, we must prescribe one and only one relation
that expresses u™ — g7 /c, as a function of {g/ };izz, u* + ¢ /c and prescribed data. The remaining
characteristic variables are all outflow, and we take the interior trace from Q as the target value for
each one so that the jump conditions are trivially satisfied. That is, g/ = g;[so fori = 2,....d
and u* + g7 /c = (u + g1/c)|so- On the other hand, if a; < 0 and |a;| < c, all of the charac-
teristic variables except u + ¢;/c are inflow, so we must write d relations that express u™ — gj /c
and {g; };izz as functions of (¥ + q1/c)|ag and prescribed data. To complete the specification of
target values, we write u* + gf'/c = (u + q1/c)|sg, so the jump condition for the last charac-
teristic variable is trivially satisfied. When |a;| > c, all of the eigenvalues are nonzero and have
the same sign. If they are all negative, then we have a pure inflow condition, and we use pre-
scribed boundary data to specify the complete target set, {u™*, q*}. If the eigenvalues are all positive,
then the boundary is pure outflow, and all target values are determined by the interior trace of the
solution on 0Q.

The last possibility is that (x,7) € dQ" is on an inter-element interface on the interior of the
current patch. In this case, we solve a local Riemann problem to determine the target values. The
Riemann solution depends on the orientation of the interface, the interior traces of the solutions on
both adjacent elements, the local flow velocity, and the local diffusive wave speed. To character-
ize the local orientation of dQ", we construct a spatial rectangular Cartesian coordinate frame at
(x,7) € Q"¢ in which the basis vector e; is aligned with n, the unit spatial normal vector at (x, ¢)

pointing from the ‘-’ to ‘+’ side of the interface. Because the cotangent space to any non-causal
manifold must be non-uniform in time, we can parameterize the cotangent space to dQ"¢ at (x, t) by
writing x; = &(x2,...,Xx4,t). Thus, in view of the orthogonal construction of the local spatial coor-

dinate frame, we write dx! = Adz in the cotangent space at (x, ¢), in which we call A = 9&/3¢|ggne
the normal velocity of 0Q"¢ at (x,t).

Now let {u~, ¢’ }l‘-l':1 and {u™, qi}id=1 denote traces of the solution from the two sides of the
interface. We construct the target values at x in terms of the Riemann solution for d = 3 following
the procedure described in [58]:
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u if A<a;—c
+ 3 >
u* = ui N L if A>a;+c (23a)
% + \/E (%) otherwise
gt if A<a;—c
1 .
qik — q_l,’_+ 1 B . lf A Z al + C (23b)
q_2q+ + \/g(“ = ) otherwise
2 .
= _ )qZ if A < a
12 = {qi otherwise (23¢)
3 .
« _ g2 ifA<a
13 = {qi otherwise (23d)

The target values for d = 1 and d = 2 are similar, with one or both of (23¢) and (23d) omitted, as
appropriate.

3.4. Constrained model for non-negative concentrations

The SDG models with piecewise-constant bases (p = 0) are unconditionally stable and produce
conservative, non-negative solutions that are free of overshoot and undershoot, even without added
stabilization. However, models with p > 1 are subject to undershoot and nonphysical negative con-
centrations at sharp fronts that can cause algorithmic failure when combined with certain equations
of state. Therefore, a robust solver for hyperbolic advection—diffusion systems must include a means
to enforce non-negative concentrations. This section introduces a constrained model that enforces
non-negative concentrations with limited impact on the element-wise conservation of the uncon-
strained SDG method. We do not enforce the constraint by modifying fluxes, because only fluxes
derived from Riemann solutions deliver conservation properties that are mathematically and physi-
cally consistent with the underlying system. Instead, we enforce non-negativity as a direct inequality
constraint on the concentration solution.

The patch-by-patch SDG solution scheme of 2.1 mitigates the computational expense of the con-
strained model in two ways. In contrast to methods where the constraint must be enforced globally,
localizing the constrained optimization problem to individual patches delivers tractable problem
sizes. In addition, we only enforce the non-negativity constraint in patches where it is active and
incur no additional computational expense in patches where the constraint is inactive. Although we
only describe the algorithmic details for linear polynomial bases (p = 1) in this work, our method
is extensible to higher-order bases at the cost of some additional algorithmic complexity.

Let R be the discrete residual vector generated by (20) for the current patch I7, let V}IF denote
the unconstrained SDG solution space on 1, and let Ry be the subvector of R generated by weight-
ing functions in the piecewise-constant subspace of V}? . Recalling that Ry = 0 ensures local
conservation for each element in the patch, we introduce

Problem 3 (Constrained patch-level problem)

IR
min —— (24a)
woev? 2
subject to
Ry =0 (24b)
infu|g = 0. (24¢)

That is, we minimize the discrete residual vector from Problem 2 in a least-squares sense while
enforcing conservation (24b) and non-negative concentrations (24c) on every element in the patch.

The least-squares structure of the minimization problem, (24a), and the linear form of the con-
straints, (24b) and (24c), guarantee that Problem 3 is convex. Therefore, it has a unique solution if
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one exists. Assuming consistent inflow data, it is easy to demonstrate the existence of a piecewise-
constant solution to Problem 2 that satisfies both constraints. Therefore, the solution set for Problem
3 is a non-empty set, and there exists a unique solution to the overall program, Problem 3 [59].

For piecewise-linear models, the solution infimum within an element must lie at one or more of
the element’s vertices. Thus, ensuring non-negative concentrations at all element vertices ensures
non-negative concentrations everywhere in the patch. Accordingly, we replace (24c) with equivalent

constraints at a finite set of discrete vertex locations, {Xx} kil
ug =20, k=12,....N, (25)

in which x; are vertex locations, ug := uly, and, in view of our use of simplicial spacetime ele-
ments, N, = (d + 2)N., where N, is the number of elements in the patch and d is the spatial
dimension.

We introduce Lagrange multipliers, {,uk}livil, corresponding to the discrete non-negativity con-
straints (25) and a second set of multipliers, {A ; }9’;1, for the components of the equality constraint,
(24b). The number of equality constraint components is N. = (d + 1) N, in which (d + 1) is
the number of conserved field components and N, is the number of elements in the patch. The
constrained minimization problem for the system, (24a), (24b), and (25), is equivalent to

Problem 4 (Min-max problem)

2IIRII2 i
Wik +mZA Ro; (26)

min max Lo :=
eVl A;€R, g €R4

where Ry := Rt U {0} and m = |IT|~%/¢*1 in which || IT|| is the spacetime measure of patch IT.

The scalings by m and m? in (26) provide dimensional consistency between the terms in the
Lagrangian, Lg. This ensures that the relative importance of the individual terms do not vary drasti-
cally with mesh refinement and prevents ill-conditioning in the incremental linear system generated
from (26); see (30) in the following.

Let o be the vector of coefficients that determine a member of V}? and V,, denote the gradient
operator with respect to . The optimality conditions for a solution to Problem 4 are

NP
m* (VaR)" R =Y px Vo +m ZA VeRoj =0 (27a)
k=1 j=1
mRy = 0 (27b)
uppk = 0; k =1,2,..., N, (27¢)
wp, ik =0, k=1,2,..., N, (27d)

We use a variant of the nonlinear complementarity (NC) method of Torres and Quintana [60] to
replace the complementarity conditions, (27c) and (27d), with a single, smooth equality for each
value of k. However, given their simple form, we work directly with the complementarity functions
instead of introducing slack variables as in [60]. We adopt the NC function from [61],

pla,b,e) =Va?+b2+e—(a+b) (28)
in which 0 < ¢ <« 1, and replace (27c) and (27d) with a system of equality constraints,
O e, g, e) =0, k=1,2,...,N,, (29)

that is equivalent in the limit as ¢ — 0. We used a fixed value, ¢ = 1e-30, to generate the numerical
results reported in Section 4.
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Let K = mV4R, where V4R is the stiffness matrix from the unconstrained Problem 2 (similar
for Ko = mV4Ry), @ be the vector of NC constraint functions, and H = V4uy be the matrix whose
rows are the values of the interpolation functions for u at the vertices. The linearized incremental
formulation of the system that comprises (27a), (27b), and (29) is AX = b, where

K'K -HT? K7 Aw
A=|-V,oH V,0 0 X=1J1Apn
Ko 0 0 AA
mK'R—HT p +KI' A
b= - @ (30)
mRO

in which A4, u, and g are column vectors containing A ;, ug, and uy. We use a Newton—Raphson
procedure to solve (30).

The active condition for the non-negativity constraint at vertex k implies that the constraint,
ur = 0, is active in some spacetime neighborhood of k. This condition, in turn, implies that the
diffusive flux, q, should vanish at k. Accordingly, we impose the additional requirement, q = 0,
wherever the non-negativity constraint is active. This leads to

Problem 5 (Constrained problem with zero-flux condition)

. RTR
min (31a)
subject to
Ro=0 (31b)
ur =0 k=12,..,N, (3lc)
q. =0 it ug >0:k=1,2,.....Np (31d)

Our numerical experience indicates that failure to enforce the constraint (31d) leads to unstable
propagation of u into regions where the solution should be zero. Because conditional constraints,
such as (31d), are difficult to implement directly [62], we adopt a simplified method instead. We
first use (30) to solve Problem 4, and then compute corrected linear distributions for q in elements
with active constraints, consistent with setting qx = 0 at vertices where py > 0 while retain-
ing unaltered values of q at the other vertices. Although (31b) in Problem 5 implies element-wise
conservation, our simplified implementation of (31d) might compromise that property in elements
where the non-negativity constraint is active. In a typical example, the maximum correction to any
vertex component of q was 0.01. However, the maximum conservation error, as measured by |Rg]|,
was only 4e-7. Thus, the error in element-wise conservation due to our simplified treatment of (31d)
was negligible in this example.

3.5. Adaptive error indicator

We use heuristic, residual-based, a posteriori error indicators to drive the adaptive solution processes
in the numerical examples presented in this work. Separate error contributions are computed for the
volume residuals and the boundary jump residuals for each element O, and there are separate error
indicators for the scalar and vector conservation relations, denoted respectively by E 19 and EZQ; cf
(16). Although the heuristic error indicators appear to work well, we plan to add indicators based
on L' error norms as a natural alternative in future applications of this work.

User-specified parameters, {£,, E_y}y:m, define target ranges for the element-wise errors:
E, <E ),Q < Fy. For each new patch, we first compute the linear SDG solution for Problem 2 and
the error indicators, £ VQ, for each element Q in the patch. We then use these to drive the h-adaptive
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SDG solution scheme described in 2.2. If EyQ > fy for either value of y, we flag element Q as
needing refinement and reject the patch solution. If EVQ < E,, for both values of y, we flag element
Q as coarsenable. Otherwise, we flag Q as neither needing refinement nor coarsening. In either of
the latter cases, we check the non-negativity condition at the patch’s element vertices. If there are
no negative values, we accept and store the patch solution. Otherwise, we solve Problem 5 using
Newton—Raphson iterations based on (30) and the simplified treatment of the conditional constraint
(31d). We globalize the Newton iterations with the non-monotone Armijo line search method of
Grippo, Lampariello, and Lucidi [63]. Upon convergence, we compute the error indicators, E 2,
once again and repeat the h-adaptive algorithm. In this way, we only solve the nonlinear con-
strained problem in patches where it is needed and only after a suitable level of mesh refinement has
been completed.

4. NUMERICAL EXAMPLES

The following examples demonstrate the accuracy, robustness, and efficiency of our SDG model,
the adaptive solution scheme, and our direct enforcement of the non-negativity constraint. In all
cases, we use a broken SDG solution space based on complete, linear spacetime polynomials (p =
1) for each solution component within each spacetime element. We do not present convergence
studies for our model, but in a previous study of an SDG model for Maxwell-Cattaneo diffusion,
Miller et al. [26] demonstrate optimal convergence rates of O(h?*1) in L!-error norms for both
solution components, ¥ and q. Similar results were obtained with a mixed SDG model for linearized
elastodynamics in [51].

4.1. Rotating flow

We use the rotating flow problem from [1] to test the accuracy of our SDG solution scheme. The
problem setup is illustrated in Figure 2(a). The flow is circular about the center of a square domain,
Q= [—1, 1] x [—1, 1], with a prescribed velocity field, a = —x,e; + x;e,. The material parameters
are k = 1077 and T = 1, consistent with negligible diffusivity. We prescribe homogeneous con-
centration and flux conditions on inflow boundary segments, as indicated in Figure 2(a), and free
conditions on outflow segments. In addition, we enforce u(x;,0) = sin(7x;) on the slit, x, = 0T,
x1 > 0 at all times."

As discussed in [7], classical upwind schemes suffer excessive crosswind diffusion on this prob-
lem. We solve the problem non-adaptively with a uniform space mesh of 1800 triangular elements.
The color plot in Figure 2(b) shows a nearly steady solution at 1 = 8. The absence of a discernible
jump between the advected solution and the prescribed values along the slit and the circular struc-
ture of the color plot suggest that the solution is accurate and free of spurious crosswind diffusion.
Due to the smooth loading, no negative concentrations were generated by the unconstrained SDG
model, so the non-negativity constraint was never invoked during the computation of this solution.

4.2. Skew advection

This example, previously studied in [24], demonstrates the accuracy of the SDG model in a
problem where the non-negativity constraint is active in some patches within an unstructured, adap-
tive spacetime mesh. The problem schematic in Figure 3 shows a square domain on which we
prescribe the flow velocity, a = coswe; + sinwe,, with « = /4. The material parameters
are k = 1077 and T = 1. The flow is supercritical everywhere. On the inflow boundary, we
enforce q = 0 and prescribe the concentration as shown in the schematic. The solution is free
on the outflow boundary. We solve the problem adaptively, starting with a space mesh that com-
prises only three triangular elements. The adaptive error tolerances were € = 3.2 x 107® and
€=4.8x1075,

Note that this condition is equivalent to prescribing the inflow characteristic variable, ¥ — g1 /c, as a function of an
outflow characteristic variable, ¥ + ¢ /c, and problem data. Specifically, u — g1 /¢ = 2sin(zwx1) — (u + q1/¢).
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u=20
Sine hill
a=(-x%,x)
u=0
u=20
(a) schematic diagram (b) near-steady solution, t = 8.

Figure 2. Rotating flow test problem: (a) schematic diagram in which bold lines indicate inflow bound-
ary segments, based on Fig. 15 in [24]; (b) broadband concentration contours for near-steady spacetime
discontinuous Galerkin solution with u € [0, 1],u = 0 — blue,u = 1 — red.

(0,1)
// (04
u=0 ,’/
’ a=cosoe +sino e
/ 1 2
(0,0.2)
(0,0) u=1 (1,0)

Figure 3. Schematic of skew advection problem, based on Fig. 13 in [24].

Figure 4(a) displays the concentration solution field at time ¢ = 0.8. The grid lines depict the
intersection of the + = 0.8 plane with the unstructured, tetrahedral spacetime mesh, so the resulting
partition of the spatial domain is not representative of the actual element geometry and mesh qual-
ity. The sharp concentration front is well resolved by the adaptive scheme, and the non-negativity
constraint is duly enforced with no oscillations and monotonic response across the front. Figure 4(b)
shows the final steady-state solution and the final space mesh. No spurious oscillations and no
excessive crosswind diffusion are observed, even at this late stage of the solution.

Although it is difficult to assess element quality from the tetrahedral mesh intersections in
Figure 4(a), the final space mesh in Figure 4(b) confirms that our adaptive spacetime mesh genera-
tor maintains a well-graded mesh with good element aspect ratios throughout the simulation. Larger
elements appear in regions where the solution is uniform, while the mesh is duly refined to capture
the transition across the front. Because the duration of a spacetime element is proportional to its spa-
tial diameter, /1, the spacetime volume occupied by an element is O(hdH). Thus, we observe that
most, in fact nearly all, of the elements in the adapted spacetime mesh participate directly in resolv-
ing the sharp wavefronts in this example. This demonstrates the efficiency of our asynchronous
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(a) t=0.8 (b) steady state
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Figure 4. Skew advection: (a), (b) concentration solutions for homogeneous initial data using linear
color map for u € [0, 1] with u = 0 — blue,u = 1 — red; (c), (d) distributions of patches with active
non-negativity constraints for uniform initial concentration, ug = 0.001.

adaptive algorithm relative to synchronous adaptive methods that must conform to either a global or
regional time-step size.

The sudden application of the inflow condition for concentration at ¢ = O creates a sharp front that
slowly diffuses to a smoother profile as the solute advects with the background flow. The remnant
of the t+ = 0 front is visible in the upper right quadrant in Figure 4(a), and we see in Figure 4(b) a
persistent layer emanating at 45° from the point of discontinuity in the inflow data on the left edge
of the domain. Small but finite diffusion causes this layer to thicken with increasing distance from
the inflow boundary, even in the continuum weak solution. Notably, the finest mesh refinement is
found at the upstream end where the layer thickness is smallest. Given that the continuum solution
is discontinuous where the layer meets the inflow boundary, part of the thickening inevitably arises
from numerical error that can be controlled, but not eliminated, by using tighter adaptive tolerances.
There is also some numerical error associated with the non-negativity constraint. Overall, however,
the numerical error is well controlled in this solution.

Our adaptive solution procedure generated 455,465 spacetime patches, of which 59,786 were
rejected by the adaptive algorithm. The non-negativity constraint was enforced in 115,523 patches
of which 23,676 were rejected, and the cost of solving a constrained patch is about 4.4 times that
of solving a patch using the unconstrained SDG procedure. Thus, selective activation of the non-
negativity constraint resulted in a 49% savings in computational effort relative to a similar SDG
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0.2)

(3.5,0) (5,0)

T,

Figure 5. Schematic of Poisseuille flow problem, based on Figure 6 in [24].

solution procedure in which the constraint algorithm is invoked in all patches. That is, selective
enforcement of the constraint cuts execution time roughly in half in this example.

We reran the model with a uniform initial concentration field, u¢y = 0.001, over the entire spatial
domain, to demonstrate selective enforcement of the non-negativity constraint. These inhomoge-
neous initial data are consistent with practical problems where the ambient concentration is often
nonzero; their effect is to reduce somewhat the number of patches where the constraint is active.
Figure 4(c) and (d) highlight the patches where the non-negativity constraint is active. We observe in
Figure 4(c) a layer of patches with active constraints along one edge of the band of mesh refinement
that indicates the front’s current position. The area where the non-negativity constraint is active does
not include regions with the most intense mesh refinement, so relatively few patches are affected by
the constraint. In the steady condition depicted in Figure 4(d), we observe that the constraint is most
active immediately downstream of the inflow point of discontinuity, where the front is sharpest. Dif-
fusion gradually softens the front as it convects downstream, and accordingly, the pattern of patches
with active constraints becomes increasingly sparse as the front approaches the outflow boundary.
Although our method for selective constraint enforcement appears to work well, we do observe lim-
ited propagation of the active constraint condition into regions adjacent to fronts where the solution
should be zero. Indeed, the nonzero concentrations in these regions are very small.

The limited problem size on an individual patch enables cost-effective enforcement of the non-
negativity constraint in our patch-by-patch solution scheme. With or without selective activation,
the cost of a constrained SDG solution grows linearly with the total number of spacetime patches
solved, whereas the cost of a constrained implicit time-marching scheme grows geometrically with
the sum of the numbers of solution degrees of freedom and Lagrange multipliers in a time-step or
spacetime slab. Thus, use of a similar technique for direct enforcement of the non-negativity con-
straint over a global time step or time slab would be much more expensive and possibly impractical
in conventional solvers.

4.3. Poisseuille flow

This example, based on a similar problem studied by Gomez et al. in [24], involves Poisseuille flow
between two parallel plates with a pollutant injected along a short boundary segment with inward
diffusive flux, ¢ = —q-n = 0.02, as shown in Figure 5. Zero normal flux conditions are imposed
along the top plate and the rest of the lower plate. The steady, incompressible background velocity
field is given by a(xy,x2) = x3(2 — x3)e;. The boundary conditions on the left and right sides
of the domain for subcritical and supercritical flows are distinct, as described in the following. We
interpret the analysis domain as a segment of a larger physical domain with no sources outside the
analysis domain. This leads us to adopt boundary conditions in the subcritical case that differ from
those used in [24].

We first choose the same material parameters, x = 2.0 and 7 = 1.0, as in[24]. This results in
a subcritical flow everywhere in the domain, with Hy,x = 1/ /2. The model advanced in [24]
imposes zero concentration and tangential flux on the upstream (left) boundary and zero nor-
mal diffusive flux (q - n = 0) on the downstream (right) boundary. These conditions generate a

“*This condition is equivalent to prescribing the inflow characteristic variable, ¥ — g1/c, as a function of an outflow
characteristic variable, ¥ + ¢1/c, and problem data. Specifically, u —q1/c = u + q1/c — 0.04/c.

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2016; 105:963-989
DOI: 10.1002/nme



HYPERBOLIC ADVECTION-DIFFUSION WITH NON-NEGATIVITY CONSTRAINT 981

(d)t=125

(e) Approaching steady state

Figure 6. Subcritical Poisseuille flow: concentration solutions using linear color map for u € [0, 0.01] with
u =0 — blue,u = 0.01 — red. (a) t=2.1; (b) t=3.3; (c) t=8; (d) t=12.5; (e) Approaching steady state.

mathematically well-posed problem that is suitable for numerical studies. However, they are unphys-
ical according to our interpretation of the analysis domain. For example, in the subcritical case,
upstream diffusion should eventually produce positive solute concentrations on the left boundary.
Given the proximity of the right boundary to the solute source, we also expect non-vanishing nor-
mal diffusion across the downstream boundary at later times. The effects of suppression of positive
concentrations along the left boundary and of normal diffusion across the right boundary are evident
in the solution displayed in Figure 7 of [24].

To address these issues, we specify vanishing inflow characteristic values and transmitting (free)
conditions for the outflow characteristic values to obtain the following relations between the target
values (* superscript) and the interior traces (undecorated) of the conserved fields:

u*—qi/c=0 (upstream and downstream boundaries) (32a)
g5 =0 (upstream boundary only) (32b)
u* +qi/c=u+q/c (upstream and downstream boundaries) (32¢)

Equations (32a) and (32b) are the inflow conditions, and (32c) is the transmitting outflow condition.
We solve the problem adaptively, starting with a space mesh of only four triangular elements and
with the adaptive tolerances set to € = 1.6 x 107> and € = 2.4 x 107>, This requires a total of
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(@t=4

byt =28

(d)t=16

Figure 7. Supercritical Poisseuille flow with non-negativity constraint: concentration solutions using linear
color map for u € [0,0.02] with u = 0 — blue,u = 0.02 — red. (a) t=4; (b) t=8; (c) t=12; (d) t=16.

2,120,035 spacetime patch solutions during the course of the simulation. We plot the SDG concen-
tration solution at selected times in Figure 6. We cannot compare directly our results with those
reported in [24], because the distinct boundary conditions in the two models generate qualitatively
different solutions. Nonetheless, the trends in our solution seem reasonable for our intended model.

We observe wave reflections off the plates at early times, f = 2.1 and ¢ = 3.5, that generate
a pattern of interacting waves that is typical of hyperbolic systems. This behavior would not arise
in corresponding parabolic systems based on Fickian diffusion models. As the solution proceeds,
we observe the effects of both advective and diffusive transport, with most of the pollutant propa-
gating downstream, while a lesser amount diffuses upstream. Consistent with our expectations, we
obtain non-vanishing concentration on the left boundary and non-vanishing normal diffusion on the
right boundary at later times. We observe no spurious reflections at the upstream and downstream
boundaries, so our transmitting conditions for the outflow characteristics appear to work well. Visual
inspection of Figures 6(d) and 6(e) suggests that our SDG solution approaches a steady state within
the finite analysis domain in which the influx of solute through the lower plate equals the total
outflux through the upstream and downstream boundaries.

We also solved the problem with material parameters, x = 0.01 and T = 1, that result in super-
critical flow over the solution domain, except for layers along the plates where the speed of the
background flow is small. We solved this problem adaptively, starting from the same space mesh
of four triangular elements. The transition between the zones with zero and positive concentra-
tions is sharper in this advection-dominated problem. Therefore, we expect undershoot and spurious
oscillations at this transition due to Gibbs effects in numerical simulations, unless corrective reme-
dies are applied. Indeed, our SDG solutions exhibit negative concentrations and oscillatory artifacts
for p = 1 when the non-negativity constraint is deactivated. We emphasize, however, that the
amplitudes of the undershoot and oscillations are very small relative to the scale of the overall solu-
tion, rendering them invisible unless we use a narrow-band color map to highlight small-amplitude
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features. It is therefore unknown whether the solutions displayed with a broadband color map in
[24] suffer the same problem.

Although small, the amplitudes of the spurious oscillations generated by our SDG model were
too large to be attributed to finite-precision arithmetic; we found them to be insensitive to mesh
refinement and to increase with higher-order elements. Because negative concentrations are non-
physical and inadmissible in some applications, we implemented the constraint algorithm described
in 3.4 to obtain a reliable and robust method for supercritical flows (to date, we have not encountered
this problem in solutions for subcritical flows). With this modification in place, our SDG solutions
are non-negative, monotone, and free of spurious oscillations.

Figure 7 displays SDG concentration results at selected times for the supercritical case obtained
with the non-negativity constraint enforced and adaptive error tolerances, ¢ = 0.8 x 107% and
€ = 1.2x107°. This simulation required a total of 1,582,577 spacetime patches. At early times (e.g.,
t = 4 in Figure 7), most of the pollutant is in the subcritical layer close to the lower plate where dif-
fusive transport dominates and some upstream pollutant propagation is evident. However, advection
increases as the solute moves upward, and we observe increased downstream propagation. The flow
becomes supercritical a short distance from the wall, and a sharp interface forms because upstream
propagation is no longer possible. This effect is more pronounced at later times, t = 8 and t = 12,
where advective effects predominate. A steady state is attained, as shown in Figure 7(d), where the
transport is primarily downstream advection with limited diffusion in the vertical direction.

Figure 8(a) and (b) show SDG concentration solutions subject to the non-negativity constraint
using a narrow-band color map that emphasizes low-amplitude detail. Even in this stringent display
format, there is no evidence of undershoot, oscillations, or spurious upwind transport. On the other
hand, spurious oscillations degrade the SDG solution adjacent to and upstream of the region of high

(@)t=6

(b)t=10

c)t=6

@ t=10

Figure 8. Concentration solutions for supercritical Poisseuille flow using narrow-band color map to accen-
tuate low-amplitude solution features: (a), (b) with and (c), (d) without non-negativity constraint. Color map
is linear for u € [0,0.002] with ¥ < 0 — blue, and # = 0.002 — red.
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y
(-3,0.5) (=2,0.5) (2,0.5) (3,0.5)
(-1,0.25) (1,0.25)
TBC (-05,-025)  (0.5-0.25) X TBC
(-3,-0.5) T T T Tq:0.0Z (3:-0.5)

Figure 9. Schematic of converging—diverging nozzle flow problem. TBC = transmitting boundary condition.

concentration when the non-negativity constraint is not enforced; as in Figures 8(c) and 8(d). Thus,
we conclude that the non-negativity constraint eliminates spurious oscillations while preserving
sharp fronts between regions of zero and high concentration.

4.4. Flow in a converging—diverging nozzle

As a final example, we model an oscillating flow in a converging—diverging nozzle. The problem
schematic in Figure 9 consists of a long channel with a converging-diverging section in its center.
Designers use nozzles of this form in turbines, jet engines, etc to accelerate fluid in the narrow
region. A chemical solute is injected into the nozzle in its neck region as shown. We assume an
unsteady, oscillating background flow, rather than a more typical steady flow, to make the problem
more challenging. We enforce transmitting boundary conditions on the left and right sides of the
domain, and solve the problem for two sets of fluid properties to explore the distinct character of
subcritical and supercritical flows.

Ideally, the assumed background flow should satisfy continuity, incompressibility, and no-slip
boundary conditions on the walls of the nozzle. Unfortunately, an analytical solution that satisfies
all three of these in our nozzle-shaped domain is not readily available. For this reason, we resort to
a flow solution that satisfies continuity and incompressibility, but not the no-slip conditions:

0.5Uey |x| > 2
_J Uey |x] <1
a(x, y) = U(l/x)ex + U(y/x?)e,  x€(1,2)
—U(1/x)ex —U(y/x?)ey, x € (—=2,—1).

(33)

in which the flow magnitude, U, is a time-dependent function, U(z) = 0.5sin(x¢).

The fluid properties for the subcritical case are k = 2, r = 1, while for the supercritical case, they
are k = 0.01, r = 1. The subcritical problem is solved with adaptive error tolerances, € = 1.6 x
107> and € = 2.4 x 107>, and required a total of 1,827,012 spacetime patches. The corresponding
values for the supercritical case are € = 3.2x107% and € = 4.8x 107, with the simulation involving
solution of 680,327 patches. Although the error tolerances for the supercritical case demand greater
accuracy, the localized nature of the supercritical solution allows the adaptive SDG solver to meet
this requirement with fewer patches than in the subcritical case by restricting mesh refinement to
regions where the solution gradients change rapidly.

Figure 10 displays a sequence of concentration solutions for the subcritical case. At early times,
such as t = 0.3, the flow diffuses in all directions, resulting in rapid smoothing of the initial wave-
front. We observe additive interference after the wavefront collides with the top wall (# = 0.5),
resulting in concentrations on the domain interior that can surpass the maximum concentration along
the boundary. This behavior contrasts with the response of parabolic advection—diffusion models
that obey the maximum principle. Diffusing wavefronts advect along the flow direction at t = 1.6,
while propagating transversely to form an intricate pattern of interacting waves.

The flow direction reverses at ¢ = 2, causing a wavefront to move into the left end of the nozzle, as
seen at f = 2.6. At long times, diffusion suppresses wave structure in the transverse direction, while
a region of increasingly high concentration forms in the central region of the nozzle. The region of
highest concentration oscillates to the left and right in response to the magnitude and direction of
the background flow and the instantaneous concentration gradients. As the flow in a cycle starts to
the left (e.g., att = 6), the higher concentration region advects to the left, while a low-concentration
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(@) t=0.3

(b)t=05

—,g

c)t=1.6

-
- -

d)t=26

,?
() t=17.9
) t=99

Figure 10. Subcritical flow in a nozzle: concentration solutions using linear color map for u € [0, 0.04] with
u = 0 — blue, u = 0.04 — red. (a) t=03; (b) t=0.5; (c) t=1.6 (d) t=2.6; (e) t=7.9; () t=9.9.

region forms on the right side of the nozzle. The high-concentration region moves slowly to the
right, opposite to the flow direction, at time ¢t = 7.9 because of the stronger gradient in that direction
and the slowing leftward flow that allows diffusive transport to dominate. Similarly, as the flow
direction reverses to the right, the higher concentration region shifts to the left in the confined
region toward the end of the cycle at ¢ = 9.9. The solution enters a repeating cycle in synchrony
with the oscillating background flow after about three cycles. Our use of transmitting boundary
conditions at the upstream and downstream boundaries prevents spurious reverse flow when the flow
direction changes. Figure 11 displays a sequence of solutions for the supercritical case where the
wavefronts are generally sharper. The solute propagates more slowly in the vertical direction than
in the flow direction, because now, the primarily longitudinal flow dominates diffusive transport.
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(a) t =1.96

(b) t =271

(c) t =3.92

(d)t=28.0

(e) t =9.95

Figure 11. Supercritical flow in a nozzle: concentration solutions using linear color map for u € [0, 0.02]
with u = 0 — blue, u = 0.02 — red.

Advection also dominates when the flow direction reverses, and in contrast to the subcritical flow,
the solute species is confined within the nozzle at all times because the flow reverses before the
solute can advect to either boundary. Even for long times, such as t = 8.0 and t = 9.95, the
concentration is zero outside the narrowed section of the nozzle. This confinement contrasts with
parabolic advection—diffusion models, where a small amount of solute is present everywhere in the
domain at all times because of the infinite propagation speed implied by Fickian diffusion. The
average solute concentration increases with time as more solute is injected into the domain and none
can exit through the boundaries. Thus, unlike the subcritical case, the supercritical solution never
enters a repeating cycle.

5. CONCLUSIONS

We have presented a new SDG method for hyperbolic advection—diffusion systems based on a
frame-invariant version of the Maxwell-Cattaneo diffusion model. We demonstrated several intrin-
sic advantages of an asynchronous, patch-wise SDG solution scheme for this application, including
element-wise conservation, the use of Riemann fluxes that require no additional upwinding or
stabilization, scalability based on linear computational complexity, and an efficient, fine-grained
h-adaptive solution scheme. We also proposed and demonstrated a new technique for enforcing
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directly a non-negativity constraint on patch-level concentration solutions while preserving the
element-wise conservation property.

Several extensions of this work are of practical interest. Given sufficient regularity of the local
solution, we know that the efficiency of causal, asynchronous SDG models increases with polyno-
mial order. In contrast to finite volume methods, higher-order SDG stencils remain compact and
do not complicate the treatment of boundary conditions. Notably, and in contrast to most other
schemes, the optimal convergence and linear computational complexity of SDG solvers deliver bet-
ter computational efficiency for higher values of p. Thus, higher-order extensions of our model that
enable /hp-adaptive implementations should further improve the method’s performance. The main
challenge involves the increasing technical complexity of the implementation of the non-negativity
constraint. For p = 1, as in this work, the knowledge that element minima must lie at one of the
vertices greatly simplifies the problem. The problem is still tractable for p = 2, but here, we must
consider the possibility that in addition to the vertices, the minimum concentration might occur on
the element interior or on any of the element faces or edges. In addition, the location where the min-
imum value is attained might change as the solution evolves. The continuum constraint becomes
more complex for p > 2 with the possibility of multiple extrema in each part of the element. Thus,
it might become expedient to approximate the continuum constraint with a set of discrete constraints
at key locations, such as vertices and quadrature points.

In this work, we adopt a divergence-free velocity field as part of the problem data. However,
many practical applications require simultaneous solutions of flow and advection—diffusion prob-
lems, with possible relaxation of the incompressibility constraint on the flow field. These extensions
are addressed in [23] for a synchronous discontinuous Galerkin model, and we foresee no fun-
damental difficulties in following a similar approach for the present SDG solver. Calibration and
validation of the Maxwell-Cattaneo diffusion model with experimental and observational data
are another practical concern. In particular, identification of the relaxation time 7 is important to
obtain predictive capabilities for problems in which the time scales of advection and diffusion have
comparable magnitudes.

Beyond the present application to advection—diffusion systems, the overall approach we propose
for the non-negativity constraint shows promise for extension to a more general class of applica-
tions that involves constrained hyperbolic partial differential equations. The asynchronous SDG
scheme on causality-constrained spacetime meshes replaces a sequence of large-scale constrained
optimization problems, defined globally for a single time-step or spacetime slab, with a series of
modest-scale, patch-wise problems where the cost of more sophisticated constrained optimization
algorithms is not prohibitive. The ability to selectively activate an expensive constraint algorithm on
only those patches where it is needed further enhances the efficiency of constrained SDG solution
methods. This efficiency could enable direct enforcement of difficult nonlinear and non-smooth con-
straints without resorting to indirect methods, such as flux limiting or matrix modification, that can
introduce unintended side effects. Thus, the general topic of SDG solvers for constrained hyperbolic
systems appears to be ripe for continuing research and new applications.
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