A Discontinuous Galerkin Method for the Solution of One Dimensional Radiative Transfer Equation

P.L. Clarke, H. Wang, J. Garrard, R. Abedi,	S. Mudaliar
Department of Mechanical Aerospace and Biomedical Engineering	Sensors Directorate
University of Tennessee Space Institute	Air Force Research Laboratory, Wright-Patterson AFB
Manchester, TN 37388-9700, USA	Dayton, OH 45433-7318, USA
pclark 1 @utk.edu, hwang @utsi.edu, jgarrard @utsi.edu, rabedi @utsi.edu and	saba.mudaliar@us.af.mil

The radiative transfer equation (RTE) for a plane-parallel problem involving scattering, absorption and radiation is solved using the discontinuous Galerkin (DG) finite element method (FEM). Both space and angle directions are discretized by the DG method. The problem is formulated for nonzero phase function. The method is validated against exact solutions, and compared with other space-angle and hybrid FEMs for a few benchmark problems. The performance of the method is also studies for the solution of problems with discontinuous solution.