Class Information

Course Description

Mechanisms of fracture and crack growth; stress analysis; crack tip plastic zone; energy principles in fracture mechanics; fatigue-crack initiation and propagation; fracture mechanic design and fatigue life prediction. Analytical, numerical, and experimental methods for determination of stress intensity factors. Current topics in fracture mechanics.

Syllabus

Class information

  • Hours: Tuesdays and Thursdays  9:40-10:55 am ET (8:40-9:55 am CT)
  • Location: UTK:  Dougherty 406                    UTSI: Main Academic Building E110

Office Hours

Meetings are scheduled by sending emails to the instructor.

Office: B209, Main academic building, UTSI
Phone: (931) 393-7334

 Course requirements

  • Homework 35% + 5% (extra credit)
  • Term project 20%: Use commercial software to evaluate stress intensity factor; Simple computations with cohesive and damage models.
  • Report and presentation on a topic on fracture 20%: 4-page report and 10-12 minute presentation at the end of the semester. Individual topics and references will be chosen by the instructor and the student.
  • Midterm and final exams 25%

Detail of course topics

Presentations

Announcements

  • No class on Thursday 8/18/2016. The first class will be on Tuesday 8/23/2016. One make up class will be held during the semester.
  • Make up class Friday 9/16, usual class time: 9:40-10:55 am ET (8:40-9:55 am CT)
  • HW1: link (Due 9/27/2016).
  • W2: link (Due 10/20/2016).
  • Make up class Tuesday 10/18, 12:40-2:10 pm ET (11:40 am -1:10 pm CT)
  • Midterm exam: link (Due 11/08/2016).
  • HW3: link (Due 12/01/2016).
  • Term project 1: Includes (About equal weights are allocated to each part)
    • 1) An up to 4 pages paper/proposal(including references if any) on a topic related to fracture mechanics. The format of the document is either that of a a) research article mostly focusing on introducing a topic of interest and presenting related results; b) research proposal that basically introduces a problem, discusses current state of the art and research gaps, and finally proposes a new approach to address the mentioned research gaps. The choice between research article or proposal is up to the student. The topic can be related to your own research work (as long as it is related to fracture mechanics) or any other topic related to the course that is of interest to you. I can help you in choosing a topic if needed. Please confirm your research topic by the end of 10/31/2016.
    • 2) Presentation of the article on the “Presentation day”. Each student will have about 15 minutes to present the material in the article (and related to it) to the entire class.
      • Presentation day: Date to be determined (during the final’s week); Location UTK (room 409 NOT 406); UTSI F110 (Those of you who cannot attend the presentation day should contact me, if not have already done, beforehand so I can arrange your presentations in one of our regular class hours).
  • Term Project 2 (Ansys Term project): Due 12/01/2016
    • Ansys_FractureMechanics: Instructions for Ansys for computing stress intensity factor (K) and J integral.
    • UTSI accounts / Ansys commercial software:
    • Installing Ansys and VPN – (contact the instructor first): Kanawful Massingille  (kmassing@utsi.edu) and Terry Garner (tgarner@utsi.edu)
    • Setting up Ansys and connecting to UTSI network. This link summarizes the following steps.
    • VPN (link) must be installed to connect to UTSI network before launching Ansys
    • Ansys can be downloaded from here (Look for Anys 15.0). Run the file Install.bat from unzipped file to install Ansys. Note: Ansys only installed on Windows and linux systems. For more information contact the instructor.
  • Final exam: link (Due 12/05/2016).

Class timeline

RA: reading assignment; Reference made to section numbers in ”details of course topics”

  1. 08/23/2016 Lecture: notes           2. History; 3.1 Fracture classification
  2. 08/25/2016 Lecture: notes           3.2 & 3.3 Ductile and brittle fracture.
  3. 08/30/2016 Lecture: notes           4. Linear Elastic Fracture Mechanics (LEFM), 4.1.1. Atomic view of fracture
  4. 09/06/2016 Lecture: notes           4.1.2. Effect of flaws, Griffith experiment; 4.1.3. Energy equation
  5. 09/08/2016 Lecture: notes           4.1.3. Energy equation, Fracture Resistance (R); 4.1.4. Energy Release Rate (G)
  6. 09/13/2016 Lecture: notes            4.1.5. Crack Stability, R and ∏ curve
  7. 09/15/2016 Lecture: notes           4.2. Stress solutions, Stress Intensity Factor K (SIF): 4.2.1. Airy stress functions
  8. 09/16/2016 Lecture: notes           4.2.2. Complex variables and cylindrical coordinate; 4.2.3. Stress solutions, stress concentration
  9. 09/20/2016 Lecture: notes           4.2.4. Crack tip stress fields, SIF
  10. 09/22/2016 Lecture: notes           4.2.4. Crack tip displacement fields, SIF; Mixed mode fracture, evaluation of KI and KII
  11. 09/27/2016 Lecture: notes           4.2.4. Crack tip displacement fields, SIF; continued.
  12. 09/29/2016 Lecture: notes           4.2.5. Relation between K & R (SIF & Resistance)
  13. 10/04/2016 Lecture: notes           5.2. Plastic zone models: 5.2.1. 1D models: Irwin model.
  14. 10/11/2016 Lecture: notes           5.2 Plastic zone models 5.2.1. Dugdale, and Barenbolt models, 5.2.2.2D models (part 1)
  15. 10/13/2016 Lecture: notes           5.2 Plastic zone models 5.2.2.2D models (part 2); 5.3. J Integra (introduction)
  16. 10/18/2016A Lecture: notes        5.3. J Integral: 5.3.1. Path independence; 5.3.2.Relation between J and G
  17. 10/18/2016B Lecture: notes        5.3.3.Relation between J and K;5.3.5.Plastic crack tip fields; Hutchinson, Rice and Rosengren (HRR) solution Link: Derivation of the relation J = G
  18. 10/20/2016 Lecture: notes        5.3.4.Energy Release Rate, crack growth and R curves
  19. 10/25/2016 Lecture: notes        5.3.7.Fracture mechanics versus material (plastic) strength; 6.1. Fracture mechanics in Finite Element Methods (FEM)
  20. 10/27/2016 Lecture: notes        6. Computational fracture mechanics, 6.1.3. Extraction of K (SIF), G
  21. 11/01/2016 Lecture: notes        6. Computational fracture mechanics, 6.1.4. J integral
  22. 11/03/2016 Lecture: notes        6.1.6, 7 Computational crack growth, Extended Finite Element Method (XFEM); 6.2. TSRs (part 1)
  23. 11/10/2016 Lecture: notes        6.2. TSRs (part 2)
  24. 11/17/2016 Lecture: notes        4.3. Mixed mode fracture
  25. 11/22/2016 Lecture: notes        4.3.2. Nucleation criteria; 8. Fatigue; 8.1. Fatigue regimes; 8.2. S-N curves; 8.3. Paris law
  26. 11/29/2016 Lecture: notes        8.3. Paris law; 8.4. Variable and random load (part 1).
  27. 12/01/2016 Lecture: notes        8. Fatigue (remaining topics); brief overview of 5.3.6. large scale yielding (LSY) and 5.4. Crack tip opening displacement (CTOD).

Selected Bibliography

  1. T. L. Anderson, Fracture Mechanics: Fundamentals and Applications, 3rd Edition, CRC Press, USA, 2004 (main textbook).
  2. D. Broek, Elementary Engineering Fracture Mechanics, 4th Revised Edition, Springer, 1982 (or reprint 2013).
  3. B. Broek, The Practical Use of Fracture Mechanics, Springer, 1998.
  4. S. Murakami, Continuum Damage Mechanics: A Continuum Mechanics Approach to the Analysis of Damage and Fracture, Springer Netherlands, Dordrecht, 2012.
  5. S. Suresh, Fatigue of Materials. 2nd ed. Cambridge University Press, 1998.
  6. L.B. Freund, Dynamic Fracture Mechanics, Cambridge University Press, 1998.
  7. B. Lawn, Fracture of Brittle Solids, Cambridge University Press, 1993.
  8. M.F. Kanninen and C.H. Popelar, Advanced Fracture Mechanics, Oxford Press, 1985.
  9. R.W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials. 5th ed. John Wiley & Sons, Inc., 2012 (material focus).
  10. S Al Laham, Stress Intensity Factor and Limit Load Handbook, British Energy Generation Limited, 1998.
  11. H Tada, P.C. Paris, G.R. Irwin, Stress Analysis of Cracks Handbook,  3rd ed., ASME Press. 2000

Useful online courseware and links

  1. Presentation on Fracture Mechanics by Dr. N. V. Phu from University of Adelaide. With special thanks to Dr. Phu, the majority of course presentations are based on Dr. Phu’s presentations.
  2. S. Suresh, Fracture and Fatigue, MITOpen courseware.
  3. V.E. Saouma, Fracture Mechanics lecture notes, University of Colorado, Boulder.
  4. P.J.G. Schreurs, Fracture Mechanics lecture notes, Eindhoven University of Technology (2012).
  5. A.T. Zender, Fracture Mechanics lecture notes, Cornell University.
  6. K. Ramesh, Engineering fracture mechanics lecture videos, IIT, Madras, India.
  7. L. Zhigilei, MSE 2090: Introduction to the Science and Engineering of Materials, University of Virginia: Excellent lecture notes on material preliminaries such as atomic structure (ch2), crystalline solids (ch3), imperfections (ch4), mechanical properties (ch6), dislocation (ch7), and failure (ch8).