Class Information

Course Description

Mechanisms of fracture and crack growth; stress analysis; crack tip plastic zone; energy principles in fracture mechanics; fatigue-crack initiation and propagation; fracture mechanic design and fatigue life prediction. Analytical, numerical, and experimental methods for determination of stress intensity factors. Current topics in fracture mechanics.


Class information

  • Hours: Tuesdays and Thursdays  12:40-1:55 pm ET (11:40am-10:55 pm CT)
  • Location: UTK:  Doherty 406                    UTSI: Main Academic Building E110

Office Hours

Tuesday 2:15-4:15 pm and Wednesday 2:15-3:15 pm ET

Office: F245, Main academic building, UTSI
Phone: (931) 393-7334

 Course requirements

  • Homework 20% + 5% (extra credit)
  • Term project 20%: Use commercial software to evaluate stress intensity factor; Simple computations with cohesive and damage models.
  • Report and presentation on a topic on fracture 20%: 4-page report and 10-12 minute presentation at the end of the semester. Individual topics and references will be chosen by the instructor and the student.
  • Midterm exam 15%
  • Final exam 25%

Detail of course topics



  • Midterm exam, Take-home 11/01/2014, Due 11/13/2014
  • No class on 10/9/2014
  • Term paper presentations: Tuesday 12/09/2014 11 am-2pm EST (10am-1pm CST)
  • Final Exam: Thursday 12/11/2014 11 am-2pm EST (10am-1pm CST)


  • HW1, Due 10/2/2014
  • HW2, Due 10/20/2014
  • Midterm, Due 11/13/2014
  • Ansys Term project, Due 12/09/2014
    • Setting up Ansys and connecting to UTSI network. This link summarizes the following steps.
      • VPN (link) must be installed to connect to UTSI network before launching Ansys
      • Ansys can be downloaded from here (Look for Anys 15.0). Run the file Install.bat from unzipped file to install Ansys. Note: Ansys only installed on Windows and linux systems. For more information contact the instructor.
    • Instructions for fracture analysis in Ansys prepared by Dr. Omid Omidi (link)
    • Instructional movies on using Ansys for fracture analysis by Dr. Omid Omidi:
      • Part 1: Model preparation, calculation of K from displacement field. In class lecture on 11/13/2014    Flashmp4
      • Part 2: Assigning one area per crack tip and having distinct material properties.                                   Flashmp4
      • Part 3: Calculation of J integral and other fracture mechanics parameters                                              Flashmp4
  • HW3, Due 12/04/2014
  • Return of term papers and presentation (no more than 10-12 minutes), 12/09/14, 11:10 am-1:55 pm.

Class timeline

RA: reading assignmentReference made to section numbers in “details of course topics”

Hand-written notes: pdf                   onenote

  1. 08/21/2014 RA: 2. History, 3.1 Fracture classification
  2. 08/26/2014 Lecture: notes          Video: Flashmp4          RA: 4.1.1-4.1.3 LEFM Griffith energy approach
  3. 08/28/2014 Lecture: notes          Video: Flashmp4          RA:  4.1.4 Energy Release Rate (G) and 4.1.4 Crack Stability
  4. 09/02/2014 Lecture: notes          Video: Flashmp4          RA:  4.1.4 R and P curves
  5. 09/04/2014 Lecture: notes          Video: Flashmp4          RA:  4.2.1-4 stress solution  at the crack tip
  6. 09/09/2014 Lecture: notes          Video file corrupted          RA:  4.2.1-4 stress solution  at the crack tip
  7. 09/11/2014 Lecture: notes          Video: Flashmp4          RA:  4.2.1-4 stress solution  at the crack tip
  8. 09/16/2014 Lecture: notes          Video: Flashmp4          RA:  4.2.5. Relation between K & R (SIF & Resistance), 4.2.6. SIF Handbooks, design
  9. 09/18/2014 Lecture: notes          Video: Flashmp4          RA:  5.2.1 Irwin, Dugdale, and Barenbolt models
  10. 09/23/2014 Lecture: notes          Video: Flashmp4          RA:  5.2.1 and 5.2.2 2D plastic zone models
  11. 09/25/2014 Lecture: notes          Video: Flashmp4          RA:  5.2.2 2D plastic zone models and
  12. 09/30/2014 Lecture: notes          Video: Flashmp4          RA:  5.3 J integral (5.3.1-5.3.2)
  13. 10/02/2014 Lecture: notes          Video: Flashmp4          RA:  5.3 J integral (5.3.2-5.3.3)
  14. 10/07/2014 Lecture: notes          Video: Flashmp4          RA:  5.3 J integral (5.3.4-5.3.6)
  15. 10/14/2014a Lecture: notes          Video: Flashmp4
  16. 10/14/2014b Lecture: notes          Video: Flashmp4          RA:  5.3 J integral (
  17. 10/21/2014 Lecture: notes          Video: Flashmp4          RA:  5.4 Crack tip opening displacement (CTOD), 6. Computational Fracture Mechanics (6.1.1)
  18. 10/23/2014 Lecture: notes          Video: Flashmp4          RA:  6. Computational Fracture Mechanics (6.1.2)
  19. 10/28/2014 Lecture: notes          Video: Part1, Part2          RA:  6. Computational Fracture Mechanics (6.1.3)
  20. 10/30/2014 Lecture: notes          Video: Flashmp4          RA:  6. Computational Fracture Mechanics, Extraction of K (SIF), G (6.1.3)
  21. 11/04/2014 Lecture: notes          Video: Flashmp4          RA:  6. Computational Fracture Mechanics, J integral (6.1.4)
  22. 11/06/2014 Lecture: notes          Video: Flashmp4          RA:  6. Computational Fracture Mechanics, Finite Element mesh design for fracture mechanics (6.1.5)
  23. 11/11/2014 Lecture: notes          Video: Flashmp4          RA:  6. Computational Fracture Mechanics, Computational crack growth (6.1.6)
  24. 11/13/2014 Instructional movie on using Ansys can be found under “Ansys Term Project Above” RA:  6.2. Traction Separation Relations (TSRs)
  25. 11/18/2014 Lecture: notes          Video: Flashmp4          RA:  4.3 Mixed mode fracture,
  26. 11/20/2014 Lecture: notes          Video: Flashmp4          RA:  8.1-8.3 Fatigue regimes, S-N curves, Fatigue crack growth models
  27. 11/25/2014 Lecture: notes          Video: Flashmp4          RA:  8.3 Fatigue crack growth models, 8.4 Variable and random load
  28. 12/02/2014 Lecture: notes          Video: Flashmp4          RA:  9. Dynamic fracture mechanics and rate effects (FYI: not included in the exam)

Selected Bibliography

  1. T. L. Anderson, Fracture Mechanics: Fundamentals and Applications, 3rd Edition, CRC Press, USA, 2004 (main textbook).
  2. D. Broek, Elementary Engineering Fracture Mechanics, 4th Revised Edition, Springer, 1982 (or reprint 2013).
  3. B. Broek, The Practical Use of Fracture Mechanics, Springer, 1998.
  4. S. Murakami, Continuum Damage Mechanics: A Continuum Mechanics Approach to the Analysis of Damage and Fracture, Springer Netherlands, Dordrecht, 2012.
  5. S. Suresh, Fatigue of Materials. 2nd ed. Cambridge University Press, 1998.
  6. L.B. Freund, Dynamic Fracture Mechanics, Cambridge University Press, 1998.
  7. B. Lawn, Fracture of Brittle Solids, Cambridge University Press, 1993.
  8. M.F. Kanninen and C.H. Popelar, Advanced Fracture Mechanics, Oxford Press, 1985.
  9. R.W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials. 5th ed. John Wiley & Sons, Inc., 2012 (material focus).
  10. S Al Laham, Stress Intensity Factor and Limit Load Handbook, British Energy Generation Limited, 1998.
  11. H Tada, P.C. Paris, G.R. Irwin, Stress Analysis of Cracks Handbook,  3rd ed., ASME Press. 2000

Useful online courseware and links

  1. Presentation on Fracture Mechanics by Dr. N. V. Phu from University of Adelaide. With special thanks to Dr. Phu, the majority of course presentations are based on Dr. Phu’s presentations.
  2. S. Suresh, Fracture and Fatigue, MITOpen courseware.
  3. V.E. Saouma, Fracture Mechanics lecture notes, University of Colorado, Boulder.
  4. P.J.G. Schreurs, Fracture Mechanics lecture notes, Eindhoven University of Technology (2012).
  5. A.T. Zender, Fracture Mechanics lecture notes, Cornell University.
  6. K. Ramesh, Engineering fracture mechanics lecture videos, IIT, Madras, India.
  7. L. Zhigilei, MSE 2090: Introduction to the Science and Engineering of Materials, University of Virginia: Excellent lecture notes on material preliminaries such as atomic structure (ch2), crystalline solids (ch3), imperfections (ch4), mechanical properties (ch6), dislocation (ch7), and failure (ch8).