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Summary We present an adaptive spacetime discontinuous Galerkin (SDG) method for linearized elastodynamics. The SDG method
uses a simple Bubnov-Galerkin projection that delivers stable and oscillation–free solutions, withO (N) complexity and exact momen-
tum balance on every spacetime element. An extended versionof the Tent Pitcher algorithm generates unstructured spacetime grids
that support simultaneous grading in space and time. We present results in 1D and 2D× time, emphasizing problems with shocks.1

INTRODUCTION

Effective numerical methods for elastodynamics are neededin diverse engineering applications, ranging from seismicex-
ploration to automotive design for crashworthiness. Accuracy requires highly refined spatial and temporal discretizations
when shocks are present, so the computational expense can beunacceptably large. We present an adaptive procedure for
elastodynamic analysis based on a spacetime discontinuousGalerkin (SDG) finite element method [1] that delivers low-
dissipation and oscillation-free solutions. The discontinuous SDG basis functions facilitate our adaptive implementation,
since nonconforming grids and jumps in polynomial order areautomatically supported. We use unstructured spacetime
meshes and a direct patch–by–patch solution procedure withO(N ) complexity. Extreme refinement is only required along
the spacetime trajectory of shocks, and we are not forced to impose global constraints on the time step size. The patch–
by–patch solution technique supports local adaptive operations. The following sections outline the SDG formulation,
describe the adaptive spacetime meshing procedures, and present some numerical results.

SPACETIME DISCONTINUOUS GALERKIN FORMULATION FOR ELASTODYNAMICS

Consider an open spacetime analysis domain,D ⊂ Ed × R, whered is the spatial dimension. LetV denote the space
of admissible SDG displacement fields onD which are piecewiseH1, but which may suffer discontinuities across a
collection ofd–dimensional jump manifolds. The SDG formulation derives from the following Bubnov-Galerkinweighted
residual statement. Find a spacetime displacement solution u ∈ V such that
∫

Q

w · L (dM + ρb)−

∫

∂Q

{

w · i (dM + ρb) + ẇ · (M∗ − M) + (ε∗ − ε) ∧ iM̂

}

+

∫

∂Q−

w0 · κ (u∗

0
− u0) iΩ = 0

(1)
for all w ∈ V , and for all open subdomainsQ ⊂ D such thatu|Q ∈ H1(Q) but whereu may jump across∂Q. The
variables in (1) are differential forms with vector coefficients:M is the spacetime momentum flux, ad–form comprised of
the stress and momentum density; the body forceb is a(d+1)–form (ρ is mass density); the strain-velocityε is a1–form;
andΩ is the standard basis for(d+1)–forms. The notationsL andi denote the Lie derivative and insertion operators, both
defined with respect to the time direction. A superscript ‘∗’ indicates a Godunov boundary value from a local Riemann
problem, andM̂ is the momentum flux associated with the weighting functionw. A subscript ‘0’ indicates a mapping into
the zero–energy subspace of steady, infinitesimal–rigid displacement fields. Equation (1) enforces momentum balance via
the equation of motion,dM + ρb = 0, and the momentum flux jump condition,M

∗ − M = 0 on ∂Q. Kinematic
compatibility is weakly enforced via the jump conditions,ε

∗ − ε = 0 on ∂Q andu
∗

0
− u0 = 0 on the time–inflow

boundary,∂Q−. Integration by parts using the Cartan identity yields the SDG weak form onQ,
∫

Q

(dẇ ∧ M − ẇ · ρb) −

∫

∂Q

{

ẇ ·M∗ + (ε∗ − ε) ∧ iM̂

}

+

∫

∂Q−

w0 · κ (u∗

0
− u0) iΩ = 0 ∀w ∈ V (2)

The SDG finite element method is obtained from (2) by associating Q with each element in a spacetime meshing ofD,
and by equipping each element with an independent set of discrete basis functions. The SDG method has low dissipation
and it delivers exact momentum balance on every element in terms of the physically meaningful Godunov fluxesM

∗. It
requires no stabilization and generates oscillation–freesolutions, even when shocks are present.

CAUSALITY AND THE ADAPTIVE TENT-PITCHER ALGORITHM

A mesh is called patch–wise causal if the elements can be grouped into patches such that the wave characteristics at every
point on every patch boundary are either all inward or all outward. The causal property establishes a partial ordering of
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Figure 1. An input space mesh and the resulting spacetime mesh computed by Tent Pitcher [2]

Figure 2. SDG displacement solutions for shock propagation in an elastic rod without adaptivity (left) and with adaptive refinement
and coarsening (center and right). The space domain is alongthe horizontal axis, and time is increasing upwards.

patches where the solution on a given patch is independent ofthe solutions on all subsequent patches; this enables patch–
by–patch solution procedures withO (N) complexity. Tent Pitcher [2] is an advancing–front meshingprocedure that
generates patchwise–causal spacetime meshes over an arbitrary spatial triangulation, as shown in Fig. 1. We immediately
compute the SDG solution on each new patch generated by Tent Pitcher. Then, based on an appropriate error indicator,
we decide whether to accept the patch (with or without a request for coarsening on subsequent patches) or to discard
the patch and demand a localh–refinement operation. In the latter case, or when coarsening is requested, an adaptive
implementation of Tent-Pitcher [3] exploits the ability ofthe SDG formulation to accommodate nonconforming meshes
in carrying out the adaptation while maintaining the patch–wise causal property.
The adaptive SDG method has been implemented for linear elastodynamics in one and two spatial dimensions. The
example depicted in Fig. 2 illustrates the benefits of spacetime adaptivity in a shock propagation problem. Shock loading
is applied to an elastic rod, with a transmitting boundary onthe left and a fixed boundary on the right. The smearing
of the shock bands in the nonadaptive solution indicates numerical error. The strongly graded adaptive mesh resolves
the fine details of the shocks with no visible smearing. Restricting the refinement to the shock trajectories reduces the
computational expense relative to adaptive procedures constrained by a global time–step size.
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