
Spacetime Meshing with Adaptive Refinement and Coarsening∗

Reza Abedi† Shuo-Heng Chung‡ Jeff Erickson‡§ Yong Fan† Michael Garland‡

Damrong Guoy¶ Robert Haber† John M. Sullivan‖ Shripad Thite‡ Yuan Zhou‡

Center for Process Simulation and Design

University of Illinois at Urbana-Champaign

{rabedi,schung6,jeffe,yongfan,garland,guoy,r-haber,jms,thite,yuanzhou}@uiuc.edu

ABSTRACT

We propose a new algorithm for constructing finite-element
meshes suitable for spacetime discontinuous Galerkin solu-
tions of linear hyperbolic PDEs. Given a triangular mesh
of some planar domain Ω and a target time value T , our
method constructs a tetrahedral mesh of the spacetime do-
main Ω × [0, T] in constant running time per tetrahedron
in IR3 using an advancing front method. Elements are added
to the evolving mesh in small patches by moving a vertex of
the front forward in time. Spacetime discontinuous Galerkin
methods allow the numerical solution within each patch to
be computed as soon as the patch is created. Our algo-
rithm employs new mechanisms for adaptively coarsening
and refining the front in response to a posteriori error esti-
mates returned by the numerical code. A change in the front
induces a corresponding refinement or coarsening of future
elements in the spacetime mesh. Our algorithm adapts the
duration of each element to the local quality, feature size,
and degree of refinement of the underlying space mesh. We
directly exploit the ability of discontinuous Galerkin meth-
ods to accommodate discontinuities in the solution fields
across element boundaries.

∗See http://www.cs.uiuc.edu/∼jeffe/pubs/refine.html for the
most recent version of this paper. Work on this paper was par-
tially supported by NSF ITR grant DMR-0121695.
†Department of Theoretical and Applied Mechanics, University
of Illinois at Urbana-Champaign, Urbana, IL 61801 (UIUC).
‡Department of Computer Science, UIUC.
§Also partially supported by NSF CAREER award CCR-0093348
and NSF ITR grant CCR-0219594.
¶Center for Simulation of Advanced Rockets (CSAR), Compu-
tational Science and Engineering Program, UIUC. The CSAR
research program is supported by the US Department of Energy
through the University of California under subcontract B523819.
‖Department of Mathematics, UIUC, and Department of Math-
ematics, Technische Universität Berlin. Also partially supported
by NSF grant DMS-00-71520.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SCG’04, June 9–11, 2004, Brooklyn, New York, USA.
Copyright 2004 ACM 1-58113-885-7/04/0006 ...$5.00.

Categories and Subject Descriptors: I.3.5 [Computer
Graphics]: Computational geometry and object modeling—
Geometric algorithms, languages, and systems; F.2.2 [Anal-
ysis of Algorithms and Problem Complexity]: Nonnumeri-
cal algorithms and problems—Geometric problems and com-

putations; G.1.8 [Numerical Analysis]: Partial differential
equations—Hyperbolic equations; finite element methods

Keywords: mesh generation, unstructured meshes, tetra-
hedral meshes, spacetime discontinuous Galerkin, advancing
front, adaptivity

General Terms: Algorithms, Performance

1. INTRODUCTION

Scientists and engineers use conservation laws and hyper-
bolic partial differential equations to model transient, wave-
like behavior in bodies or spatial control volumes. Example
applications are numerous, ranging from the Euler equations
for compressible gas dynamics, to the Schrödinger equation
for time-dependent density functional theory in quantum
mechanics, to the equations of elastodynamics in seismic
analysis. Closed-form solutions are typically unavailable for
these problems, so analysts usually resort to numerical ap-
proximations. However, the continuum solutions can exhibit
strongly nonlinear behavior as well as shocks and other dis-
continuities that make this class of numerical problems par-
ticularly challenging.

Finite element methods are a good option for solving these
problems, especially when the geometry of the analysis do-
main is complicated. In the standard semi-discrete approach,
a finite element mesh discretizes space to generate a system
of ordinary differential equations in time that is then solved
by a time-marching integration scheme. Most methods en-
force a uniform time step size over the entire spatial domain.
This approach can be very costly for strongly graded grids,
because the allowable time step size is limited by the global
minimum element diameter. However, physical causality
only implies a local limit on the step size, so algorithms that
use a nonuniform time step size can substantially improve
computational efficiency.

Dynamic adaptive refinement and coarsening is essential
for capturing solution features that move with traveling in-
terfaces and shock fronts. Each discrete remeshing opera-
tion requires a projection of the solution fields from the old
grid onto the newly adapted mesh. These projections can
be costly and inconvenient to compute, and they introduce

300

Figure 1. An input space mesh and the resulting spacetime mesh computed by Tent Pitcher [8]

significant error. A more continuous approach to adaptive
refinement could eliminate these data projections and the
error they produce.

Spacetime discontinuous Galerkin finite element methods
[31, 6, 15, 36, 35, 21] are a relatively new alternative to
semi-discrete methods. (For further background on discon-
tinuous Galerkin methods in general, we refer the reader to
Cockburn, Karniadakis, and Shu [7].) Two features distin-
guish spacetime discontinuous Galerkin methods from con-
ventional finite element models. First, spacetime discon-
tinuous Galerkin methods work with meshes that cover the
entire spacetime analysis domain. For example, simulation
of evolving behavior on a three-dimensional spatial domain
requires a four-dimensional spacetime mesh. The spacetime
discontinuous Galerkin algorithm weakly enforces the gov-
erning equations over each spacetime element, eliminating
the need for a separate time integration procedure. The
second distinguishing feature is the use of discontinuous ba-
sis functions with support on individual elements for rep-
resenting the physical fields. In contrast to conventional
finite element methods that use continuous bases, this ap-
proach eliminates artificial coupling between adjacent ele-
ments when the mesh satisfies certain causality constraints.
It also guarantees exact satisfaction of the relevant balance
laws on every spacetime element.

Building on ideas from earlier specialized algorithms [15,

28, 32, 34], Üngör and Sheffer [33] and Erickson et al. [8] de-
veloped the first algorithm to build graded spacetime meshes
over arbitrary simplicially meshed spatial domains, called
‘Tent Pitcher’. Unlike most traditional approaches, the Tent
Pitcher algorithm does not impose a fixed global time step
on the mesh, or even a local time step on small regions of
the mesh. Rather, it produces a fully unstructured simpli-
cial spacetime mesh, where the duration of each spacetime
element depends on the local feature size and quality of the
underlying space mesh. See Figure 1.

Given a triangular mesh of some planar domain Ω, and a
target time value T , the Tent Pitcher algorithm meshes the
spacetime domain Ω× [0, T] in IR3 using an advancing front
method. Elements are added to the evolving mesh in small
patches by moving a vertex of the front forward in time. The
advance in time is limited by causality, to ensure that the
solution in the new patch depends only on boundary data
and solution data from previously computed patches. The

use of discontinuous basis functions avoids artificial coupling
with subsequent patches. Thus, the spacetime discontinuous
Galerkin solution can be computed locally within each new
patch as soon as it is created. Provided the initial ground
mesh has constant degree, each patch contains only a con-
stant number of elements and can therefore be solved in con-
stant time. The time to generate the spacetime mesh and
compute the numerical solution is, therefore, linear in the
number of spacetime elements. Moreover, because patches
with no causal relationship can be solved independently, the
Tent Pitcher algorithm is uniquely well-suited for parallel
implementation. In Section 2, we give a new and more intu-
itive formulation of the Tent Pitcher algorithm and review
its theoretical guarantees.

In this paper, we introduce new mechanisms into the Tent
Pitcher algorithm that adaptively refine or coarsen the ad-
vancing front in response to a posteriori error estimates
computed by the numerical code. The front at any stage
of the meshing and solution process is a hierarchical sub-
division of the original space mesh. A change in the front
induces a corresponding refinement or coarsening of future
elements in the spacetime mesh. We refine the front using
the classical newest vertex bisection method of Sewell [27]
and Mitchell [18, 19, 20]; we coarsen the front only by re-
versing earlier refinements. These modifications generate
non-conforming spacetime meshes; two adjacent spacetime
elements may not share a common face. However, because
discontinuous Galerkin methods directly accommodate dis-
continuities in the solution field across element boundaries,
they do not require conforming meshes or a data projection
operation. We describe the remeshing operations in detail
in Section 3. In practice, the meshes we compute effectively
track shocks and moving interfaces through spacetime; re-
gions of the front are refined in response to an approaching
shock, and then coarsened again after the shock passes.

The original Tent Pitcher algorithm of Üngör and Shef-
fer [33] required every angle in the input mesh to be acute; if
the ground mesh contains an obtuse angle, their algorithm
can get stuck. Erickson et al. [8] remove this limitation
by imposing an additional constraint, beyond those due to
causality, on the maximum height of any tent. This so-called
progress constraint, which depends on the shape of the un-
derlying space elements, guarantees a lower bound on the
minimum height of the tent. Adapting this progress con-

301

straint to support the changing geometry of the front is the
main technical contribution of this paper; see Section 4.

In Section 5 we describe a 2D×time linear elastodynam-
ics simulation computed with the help of our meshing al-
gorithm. Finally, we conclude the paper by describing our
ongoing work and open problems in spacetime meshing.

2. SPACETIME MESHING

The formulation of our spacetime meshing problem relies on
the notions of domain of influence and domain of depen-
dence for hyperbolic boundary value problems. We say that
a point p̂ in spacetime depends on another point q̂ if the
values of the salient physical fields (e.g., temperature, ve-
locity, pressure, stress, momentum) at p̂ depend on the field
values at q̂; that is, if changing the conditions at q̂ can affect
the conditions at p̂. The domain of influence of p̂ is the set
of points that depend on p̂; symmetrically, the domain of

dependence is the set of points that p̂ depends on.

If the governing equations of the underlying problem are
linear and the material properties are homogeneous and
isotropic, the domains of influence and dependence are cir-
cular cones with a common apex p̂. This double cone can
be described by a scalar wave speed c(p̂) ∈ IR, which speci-
fies how quickly the radius of the cones grows as a function
of time. In this paper, we consider only linear problems,
where the wave speed is uniform and isotropic over the en-
tire spacetime domain. In this case, we can choose an ap-
propriate time scale, independent of the spatial scale, so
that c(p̂) = 1 everywhere. For more general problems, the
wave speed can vary with direction and as a function of in-
homogeneous physical parameters, and might even depend
nonlinearly on the solution.

We say that one spacetime element 4 depends on another
spacetime element 4′ if any point p̂ ∈ 4 depends on any
point q̂ ∈ 4′. The solution can be computed in each element
one at a time, following any linear extension of the depen-
dency partial order. Alternatively, the solutions within any
anti-chain of elements can be computed in parallel.

Although discontinuous Galerkin methods impose no a

priori restrictions on the primitive shapes of individual el-
ements, it is convenient to work with simplicial elements.
We say that a facet F of a tetrahedral element is causal if it
separates the cone of influence from the cone of dependence
at every point on F (Figure 2), or equivalently, if ‖∇F‖ ≤ 1.
If a facet is causal, physical information flows in only one
direction across that facet. To construct an efficient tetra-
hedral mesh, we group elements into patches, each with a
constant number of elements. The Tent Pitcher algorithm
ensures that the boundary facets between patches are causal

by construction; we refer to this requirement as the causality

constraint (called the cone constraint in Erickson et al. [8]).

In general, the internal facets between elements within a
single patch are not causal. Since information can flow in
both directions across these facets, the physical response in
adjacent elements is coupled, and all of the elements within
a patch must therefore be solved simultaneously. However,
if we assume polynomial basis functions of bounded degree,
the resulting linear system still has bounded size and can
therefore be solved in constant time. Thus, the total time to
compute the numerical solution is still linear in the number
of elements.

ti
m

e

Figure 2. The causality constraint: The facet separates the cone of
influence (above) from the cone of dependence (below).

Richter [22] observed that undesirable numerical dissipa-
tion increases in certain discontinuous Galerkin methods as
the slopes of boundary facets decrease below the local wave
speed. Thus, our goal is to construct an efficient mesh com-
prised of patches, each containing a small number of sim-
plices, such that the boundary facets of each patch are as
close as possible to the cone constraint without violating it.

2.1 Advancing-Front Spacetime Meshing

Given a triangulated planar domain Ω and a target time
value T , Tent Pitcher constructs a tetrahedral mesh of the
spacetime domain Ω × [0, T]. The algorithm is designed as
an advancing front procedure, which alternately constructs
a new patch of elements and invokes a spacetime discontinu-
ous Galerkin finite-element method to compute the solution
within that patch.

At every iteration, the front is the graph of a continuous
time function t : Ω → IR, such that within every triangle, t
is linear and ‖∇t‖ ≤ 1, where ∇t denotes the gradient of t.
We will assume that the initial time function is constant,
but more general initial conditions are also permitted. The
front is a terrain whose facets correspond to triangles in the
underlying space mesh. To advance the front, the algorithm
chooses an arbitrary local minimum vertex p̂ = (p, t(p)) from
the front and moves it forward to a new point p̂′ = (p, t′(p))
where t′(p) > t(p). The volume between the new and old
fronts is called a tent. We decompose the tent into simplices
sharing the edge p̂p̂′ and pass these elements, along with the
inflow elements just below the tent, to a DG solver. When
the algorithm has several choices for the vertex to advance
next, we apply one of several heuristics; some heuristics ap-
pear to work better in practice than others. The algorithm
is free to advance a vertex that is not a local minimum; how-
ever, in that case, a finite amount of progress cannot always
be guaranteed.

2.2 Causality and Progress Constraints

To complete the description of Tent Pitcher, all that remains
is to describe how to compute the new time values for each
vertex to be pitched, or less formally, how high to pitch each
tent. Each triangle in the ground mesh imposes constraints
on the time values at each of its vertices. When we pitch
a tent over a local minimum vertex p̂, the new time value
t′(p) is simply the largest value that satisfies the constraints
for every triangle adjacent to p in the ground mesh.

Thus, it suffices to consider the case where the ground
mesh consists of a single triangle 4pqr. At any stage of
the algorithm, the front consists of a single triangle 4p̂q̂r̂

302

Figure 3. Pitching tents in spacetime.

whose vertices have time values t(p), t(q), and t(r). Suppose
without loss of generality that t(p) ≤ t(q) ≤ t(r) and we
want to advance p̂ forward in time. We must choose the
new time value to satisfy the causality constraint ‖∇t‖ ≤ 1.
Erickson et al. [8] show that this constraint can be expressed
by the following inequality:

t′(p) ≤ t(q) +
t(r) − t(q)

|qr|2
(~qp · ~qr)

+

s

1 −

„

t(r) − t(q)

|qr|

«2

d(p, qr)

(1)

Here, d(p, qr) denotes the distance from p to the line qr.

Üngör and Sheffer [33] proved that if every angle in 4pqr
is acute, then exactly meeting the causality constraint guar-
antees that further advancement is always possible. How-
ever, if ∠pqr is obtuse, then lifting p̂ as far as possible may
prevent us from lifting q̂ in the next iteration without vio-
lating causality. To avoid this problem, Erickson et al. [8]
impose an additional progress constraint, which limits the
gradient of the time function restricted to the edges touch-
ing the obtuse angle.

The progress constraint can be visualized easily using a
circle diagram; see Figure 4. Think of the gradient vector
∇t as a point in the plane; the causality constraint restricts
this point to the unit disk centered at the origin. We can
partition this disk into three wedges by the inward normal
vectors of the edges of 4pqr. Each wedge is associated with
a vertex of the triangle; for example, the wedge for p is
bounded by vectors normal to the edges pq and pr. The
gradient vector ∇t lies inside p’s wedge if and only if p has

p

qr

Figure 4. A triangle and its circle diagram. To guarantee causality,
the gradient vector ∇t must stay inside the circle; to guarantee
progress, ∇t must stay out of the shaded forbidden zones.

the smallest time value, and pitching p moves the point ∇t
along the inward normal vector to the edge qr, or in other
words, parallel to the vector that does not bound the current
wedge.

To guarantee that the algorithm never gets stuck, we must
ensure that we can always move the point ∇t out of its cur-
rent wedge; otherwise, the lowest vertex will never progress
past its neighbor. If 4pqr has an obtuse angle, this re-
quirement creates “forbidden zones” inside the two obtuse
wedges, bounded by lines normal to the edges adjacent to
the obtuse angle. The progress constraint is simply to stay
out of these forbidden zones. We can express this constraint
algebraically as the inequality t′(p) ≤ t(r) + (1 − ε)d(p, qr),
where 0 < ε ≤ 1/2 is a tunable parameter.

3. HIERARCHICAL MESH REFINEMENT

Our adaptive algorithm uses the newest-vertex bisection re-
finement method, originally developed by Sewell [27], later
adapted by Mitchell [18, 19, 20] in the context of multigrid
methods, and still later studied and generalized to three
dimensions by Bänsch [3]. This method is similar to the
more common longest-edge refinement methods introduced
by Rosenberg and Stenger [26] and popularized by Rivara
[23, 24, 25] and others [12, 1, 29]. For a general discussion of
mesh refinement methods, we refer the the reader to surveys
by Jones and Plassmann [9] and by Bern and Plassmann [4].

We call the newest vertex of a triangle its apex and the
opposite edge its base. Initially, one vertex of each triangle
in the mesh is chosen arbitrarily as its apex. Newest-vertex
bisection replaces a triangle with two smaller triangles, each
with half the area of the original triangle, obtained by bi-
secting along the line segment through the apex and the
midpoint of the base. The new vertex introduced at the
midpoint is the newest vertex of both smaller triangles.

The descendants of any marked triangle under newest-
vertex bisection fall into only eight homothetic classes—see
Figure 5—and there are only four directions along which the
triangle or any of its descendants can be further bisected.
These four directions are parallel to the three edges of the
triangle and the bisecting segment. Any two triangles in the
same equivalence class have corresponding newest vertices.

When we refine one triangle in a mesh, we may be forced
to refine other nearby triangles in order to maintain a con-
forming triangulation. Suppose vertex a is the apex of a
4abc that is bisected (Figure 6). If bc is not a boundary
edge then some neighboring triangle 4cbe shares the edge

303

A B C

A A
D

D

B C B C

B C

BC

Figure 5. Newest vertex refinement.

a

b

c

e

d

a

b

c

e

(a) (b)

Figure 6. Refinement propagating to neighboring triangles.

bc. To maintain a triangulation, 4cbe must be bisected also.
If bc is not the base of 4cbe then the child of 4cbe sharing
edge bc must be bisected as well, and the bisection of 4cbe
will propagate recursively; see Figure 6. It is easy to prove
that this propagation terminates, regardless of which ver-
tex is chosen as the apex of each triangle. The propagation
path touches every triangle in the worst case, but in prac-
tice, the propagation path usually has small constant length;
see Suárez et al. [30] for an analysis of a similar refinement
algorithm.

The entire refinement sequence can be expressed as a se-
quence of edge bisection and quad flip operations. The for-
mer operation bisects an edge shared by one or two triangles,
and the latter replaces one diagonal of a convex quadrilateral
with the other diagonal.

Coarsening is the opposite of refinement; we coarsen lo-
cally by undoing a single edge bisection. Unlike refine-
ment, coarsening does not require propagation further into
the mesh to maintain a conforming triangulation, although
one coarsening step may make other coarsenings possible.
In particular, if we refine a triangle and then immediately
coarsen, we can (but need not) coarsen along the entire re-
finement path.

Newest-vertex bisection never subdivides any angle of a
triangle more than once. Therefore, the degree of any ver-
tex in the mesh at most doubles as a result of refinement.
Moreover, given a triangulation with maximum degree d
with vertices in general position, if the vertex with largest
angle in each triangle is chosen as the apex, then any re-
finement of the initial triangulation has maximum degree at
most max{d + 5, 8}.

4. MAKING TENT PITCHER ADAPTIVE

To incorporate adaptivity into our meshing algorithm, we
make a small change to the main loop. At each iteration, just
as before, we choose a local minimum vertex p̂ of the front,

move it forward in time to create a tent, and pass the tent
and its inflow data to the spacetime DG solver. We assume
that the solver also computes an a posteriori estimate of its
own numerical error. If the error within any element of the
tent is above some threshold, the solver rejects the patch,
at which point the meshing algorithm throws away the tent
and refines the facets of the front whose elements had high
error. (Alternately, we could refine the facets until their
diameter is smaller than a target length scale computed by
the solver.) Note that this refinement may propagate far
outside the neighborhood of p̂. We accept the numerical
solution and update the front only if the error within every
element of the patch is acceptable.

On the other hand, the error estimate within an element
may fall below some second threshold, indicating that the
mesh is finer than necessary to compute the desired result.
In this case, the DG solver marks the outflow face of that
element as coarsenable. We can coarsen four facets of the
front into two only if they are the result of an earlier re-
finement, they are all marked as coarsenable, and each pair
of triangles to be merged is coplanar. To make coarsening
possible, our algorithm tries to make coarsenable siblings
coplanar, by lowering the top of the tent. However, to avoid
very thin elements, we only accept the lower tent if its height
is above some threshold. If the lower tent is accepted and its
outflow faces are still marked coarsenable, then we coarsen
the front.

4.1 New Progress Constraints

The more subtle and important change in our algorithm is
the introduction of new progress constraints. In the earlier
non-adaptive algorithm [8], the progress constraint was a
function of the shape of the underlying space elements. In
our new algorithm, the shape of the underlying element is
subject to change; each triangle in the current front may be
the result of any number of coarsenings or refinements since
the last time any ancestor or descendant of that triangle was
last pitched. Consequently, our progress constraints must
take into account the shapes of all possible descendants of
a triangle simultaneously. This requirement motivates our
choice of newest-vertex refinement; because the descendants
of any triangle fall into only a finite number of homoth-
ety classes, we have only a finite number of simultaneous
progress constraints.

We can visualize these constraints by referring back to
our circle diagram; see Figure 7. A minimal set of progress
constraints can be obtained by simply taking the union of
the non-adaptive progress constraints of the eight shapes in
the hierarchy. These constraints are not necessarily suffi-
cient, however, since it may be impossible for the gradient
to leave a wedge for one triangle without violating a progress
constraint for a different triangle. Fortunately, we can avoid
these conflicts by strengthening some of the constraints.

Omitting the geometric derivation, we formally describe
the resulting constraints as follows. Fix two real numbers
0 < δ, ε < 1. For any triangle 4abd with apex a, we define
the diminished width of 4abd as follows:

wε(ȧbd) := min

8

<

:

(1 − ε) d(a, bd),
(1 − δ) d(b, ad),
(1 − δ) d(d, ab)

9

=

;

The first distance is measured from the apex to the opposite
edge and is scaled differently from the other two altitudes.

304

B

B

D

D

A

A

C

C

Figure 7. Merging eight progress constraints into one.

This definition extends recursively to any descendants of
4abd obtained by newest-vertex subdivision; in the interest
of readability, we will always list the vertices of any triangle
with the apex first. Now let c be the midpoint of bd and let
e be the midpoint of ab, as illustrated below. We express
our new progress constraints algebraically by limiting the
difference in time values along each edge in the subdivided
triangle, as follows.

a

b c d

e

|t(a) − t(b)| ≤ 2wε(ċad)
|t(a) − t(c)| ≤ wε(ȧbd)
|t(a) − t(d)| ≤ 2wε(ċab)
|t(b) − t(d)| ≤ 4wε(ėca)

These constraints apply recursively to all descendants of the
triangle 4abd—for example, we also enforce the constraint
|t(c) − t(e)| ≤ wε(ċab)—but these recursive constraints are
redundant, since they limit the gradient of the time function
in exactly the same direction as one of the four constraints
above.

Now suppose we are pitching a triangle 4pqr, where t(p) ≤
t(q) ≤ t(r). Let s be the midpoint of qr; let u be the mid-
point of pr; and let v be the midpoint of pq; see Figure 8.
Depending on which of the three vertices is marked as the
apex, the new time value t′(p) is bounded as a result of these
progress constraints in the three different ways enumerated
below. Notice that when p is not the apex, lifting p also lifts
either u or v, so progress constraints along edges qu or rv
also indirectly limit t′(p).

If p is the apex:

t′(p) ≤ min

8

<

:

t(q) + 2wε(ṡpr),
t(s) + wε(ṗqr),
t(r) + 2wε(ṡpq)

9

=

;

(2)

q

u

p

r

v

s q

u

p

r

v

s q

u

p

r

v

s

(a) (b) (c)

Figure 8. Cases for implementing the combined progress constraints:
(a) p is the apex, (b) q is the apex, (c) r is the apex.

If q is the apex:

t′(p) ≤ min

8

<

:

t(q) + 2wε(u̇qr),
t(r) + 4wε(v̇qu),
2t(q) − t(r) + 2wε(q̇pr)

9

=

;

(3)

If r is the apex:

t′(p) ≤ min

8

<

:

t(q) + 4wε(u̇rv),
t(r) + 2wε(v̇qr),
2t(r) − t(q) + 2wε(ṙpq)

9

=

;

(4)

4.2 Proof of Positive Progress

In this section, we prove that for any triangle 4pqr that
satisfies the causality and progress constraints, we can lift p̂
at least ∆ above q̂ without violating either constraint, where
∆ is a positive function of the shape of the triangle and the
scaling parameters ε and δ. The causality constraint and
the progress constraints will each imply a different upper
bound on the maximum progress ∆ that we can guarantee.

Lemma 1. If 4p̂q̂r̂ satisfies the causality and progress con-

straints, we can set t′(p) = t(q)+ε·d(p, qr) without violating

the causality constraint.

Proof: First, we show that the progress constraints imply
t(r)− t(q) < (1 − ε)|qr| no matter which vertex is the apex.
If p is the apex, we have the following series of inequalities:

t(r) − t(q) ≤ 4wε(u̇ps)

≤ 4(1 − ε)d(u, ps)

= 2(1 − ε)d(r, ps)

≤ 2(1 − ε)|rs| = (1 − ε)|qr|

305

Here, the first inequality is the actual progress constraint,
the second follows from the definition of diminished width,
and the rest follow from the geometry of the recursively
bisected triangle. Similarly, if q is the apex, we have

t(r) − t(q) ≤ 2wε(u̇pq)

≤ 2(1 − ε)d(u, pq)

= (1 − ε)d(r, pq) ≤ (1 − ε)|qr|,

and if r is the apex, we have

t(r) − t(q) ≤ 2wε(v̇pr)

≤ 2(1 − ε)d(v, pr)

= (1 − ε)d(q, pr) ≤ (1 − ε)|qr|.

Solving for ε gives us the inequality

ε ≤ 1 −
t(r) − t(q)

|qr|
≤

s

1 −

„

t(r) − t(q)

|qr|

«2

,

which implies that

t′(p) = t(q) + ε · d(p, qr)

≤ t(q) +

s

1 −

„

t(r) − t(q)

|qr|

«2

d(p, qr)

≤ t(q) +
t(r) − t(q)

|qr|2
(~qp · ~qr)

+

s

1 −

„

t(r) − t(q)

|qr|

«2

d(p, qr).

This is exactly the expression of the causality constraint in
equation (1). �

Lemma 2. If 0 < ε < δ < (1 + ε)/2 < 1 and 4p̂q̂r̂
satisfies the causality and progress constraints, we can set

t′(p) = t(q) + ∆ without violating any progress constraint,

where ∆ > 0 is a function of the triangle 4pqr and the

parameters ε and δ.

Proof: As in the previous proof, we have three cases to
consider. In each case, we will derive positive upper bounds
on the possible value of ∆; setting ∆ to the minimum of
these upper bounds will satisfy the conditions of the lemma.

First, suppose p is marked. Since t(r) ≥ t(s) ≥ t(q), the
relevant progress constraint (2) is satisfied if

∆ ≤ min{2wε(ṡpr), wε(ṗqr), 2wε(ṡpq)}.

Similarly, suppose r is marked. Since t(r) ≥ t(q), we have
2t(r) − 2t(q) ≥ 0, which implies that the relevant progress
constraint (4) is satisfied if

∆ ≤ min{4wε(u̇rv), 2wε(v̇qr), 2wε(ṙpq)}.

Finally, suppose q is marked. By the inductive hypothesis,
edge qr already satisfies its individual progress constraint
t(r) ≤ t(q) + 2wε(u̇pq), which implies that t(q) − t(r) ≥
−2wε(u̇pq). Since t(r) ≥ t(q), the relevant progress con-
straint (3) is satisfied if

∆ ≤ min{2wε(u̇qr), 4wε(v̇qu), 2wε(q̇pr) − 2wε(u̇pq)}.

The last term in this expression is the only one that is not
obviously positive. To prove that X = wε(q̇pr) − wε(u̇pq)

is in fact bounded away from zero, we expand the definition
of diminished width. We have X = min{A, B, C}, where

A = (1 − ε)d(q, pr) − min

8

<

:

(1 − ε)d(u, pq),
(1 − δ)d(p, qu),
(1 − δ)d(q, pu)

9

=

;

≥ (1 − ε)d(q, pr) − (1 − δ)d(q, pu)

= (δ − ε)d(q, pr),

B = (1 − δ)d(r, pq) − min

8

<

:

(1 − ε)d(u, pq),
(1 − δ)d(p, qu),
(1 − δ)d(q, pu)

9

=

;

≥ (1 − δ)d(r, pq) − (1 − ε)d(u, pq)

= (1 − 2δ + ε)d(u, pq),

C = (1 − δ)d(p, qr) − min

8

<

:

(1 − ε)d(u, pq),
(1 − δ)d(p, qu),
(1 − δ)d(q, pu)

9

=

;

≥ (1 − δ)
`

d(p, qr) − min {d(p, qu), d(q, pu)}
´

.

Since by assumption ε < δ < (1 + ε)/2, we clearly have
A > 0 and B > 0. We prove that C > 0 as follows:

d(p, qr) =
2Area(4pqr)

|qr|

=
2Area(4pqu)

|uv|

>
2Area(4pqu)

max {|qu|, |pu|}

= min {d(p, qu), d(q, pu)} .

The key observation is that the bisector segment uv must
be shorter than at least one of the two edges pu and qu. �

Theorem 3. Given a triangular mesh Ω in the plane and a

target time value T , our algorithm builds a finite tetrahedral

mesh of the spacetime domain Ω×[0, T], in constant running

time per element, provided each triangle is refined only a

finite number of times.

5. EXPERIMENTAL RESULTS

We have implemented our adaptive spacetime meshing al-
gorithm in 1D×time and 2D×time. We present here an ex-
ample to demonstrate its application to a scientific problem
of practical complexity: the phenomenon of crack-tip wave
scattering within an elastic solid subjected to shock loading.

Figure 9 shows a stationary crack embedded in a rectan-
gular plate subjected to a spatially uniform tensile traction
on its top and bottom edges. We prescribe traction-free
boundary conditions on the left and right edges and plane-
strain conditions overall. The load history approximates a
step function; as depicted in Figure 9, the load intensity σ
rises from 0 to a maximum value σ∗ = 10 over the ramp time
tramp = 0.002, so that the ramp covers 3.25% of the width of
the plate. This suddenly-applied loading generates a linear
shock wave that moves from the top loaded edge toward the
crack surface at the bottom. When the shock reaches the
crack, it reflects back up toward the top of the plate and
scatters in a circular wave pattern from the crack-tip.

The material properties of the plate are Young’s modulus
E = 10, Poisson’s ratio ν = 0.3, and mass density ρ = 1.

306

σ

σ time

σ
Load

t
ramp

(a) (b)

Figure 9. Crack geometry and loading for the crack-tip wave scat-
tering problem.

Since the domain and initial conditions are symmetric, we
explicitly model only the upper right quadrant of the do-
main, specifying symmetric boundary conditions at the left
and bottom edges. The initial space mesh contains only 16
triangles; we depend on the adaptive meshing algorithm to
generate all of the necessary refinement. We use a com-
plete quadratic polynomial basis (1 x y t xy yt tx x2 y2 t2)
to represent the displacement field within each tetrahedral
spacetime element.

A dissipation-based error indicator drives the adaptive
meshing scheme. The energy dissipated by each patch is
compared to the total energy flux into the patch; zero dissi-
pation indicates exact energy balance. We set a normalized
dissipation target, dissipation/energy influx = 1.0 × 10−7.
Elements with dissipation more than 20% above the target
are rejected and marked for mandatory refinement. Ele-
ments with dissipation more than 20% below the target are
accepted and marked as eligible for coarsening. We also
specify a minimum dissipation of 6.0 × 10−10 and a mini-
mum element size of 5.0 × 10−5, below either of which no
further refinement is allowed.

The final spacetime mesh contains 17, 052, 587 tetrahe-
dra, clustered into 2, 964, 477 patches. During the solution
process, 3, 679, 040 patches containing 21, 956, 046 tetrahe-
dra were computed and solved; approximately 20% of these
patches were rejected, causing the front to be refined. The
ratio of the largest to smallest element diameters in the
spacetime mesh is 1024, reflecting 20 levels of refinement.
The normalized dissipation for the entire spacetime analysis
domain is 0.079%.

Figure 10 shows two pairs of visualizations of the com-
puted solution within the upper right quadrant of the plate.
Each image illustrates the intersection of the spacetime data
set with a constant-time plane. The images on the left
display two axes of the solution data, by mapping strain-
energy-density to a color field on a logarithmic scale, and
mapping the magnitude of the velocity field to a height field.
The images on the right show the intersection of the unstruc-
tured tetrahedral spacetime mesh with the constant-time
plane, together with the strain-energy-density color field.

The first pair of images in Figure 10 show the shock front
as it approaches the crack surface for the first time. The
pattern of mesh refinement accurately tracks the fine details
of the traveling waves, including the primary shock front
as well as dilitation and shear waves generated along the
traction-free top edge.

The second pair of images show the initial crack-tip wave
scattering pattern some time after the shock first arrives at
the crack. The circular scattering pattern is reflected in the
mesh refinement; the outer annulus of less intense refinement
indicates the extent of the faster dilitational wave compo-
nent, while the circle of more intense refinement indicates
the slower shear wave. A singular strain-energy-density field
is visible at the crack tip, a stationary feature that generates
a persistent region of intense mesh refinement.

Figure 11 shows two views of the entire spacetime mesh
at roughly the same time depicted in the second row of Fig-
ures 10. The vertical axis is time, and the pattern of re-
finement on the vertical faces follows closely the spacetime
trajectories of the shocks; see Figure 11(a). The cone-shaped
region of intense mesh refinement in Figure 11(b) covers the
domain of influence of the initial crack-tip scattering event.
The asymmetry of the cone is consistent with the form of
the singular crack-tip field, which vanishes in the plane of
the crack ahead (to to the right) of the tip.

As expected, our experimental results show a significant
improvement in the quality of the solution as a result of
adaptivity, especially near discontinuities in the solution or
its derivative. Also, we were able to achieve a better solution
without using a fine mesh everywhere, which would have
resulted in a massive increase in computation time.

6. CURRENT AND FUTURE WORK

We implemented a sequential version of our adaptive Tent
Pitcher algorithm for one- and two-dimensional spatial do-
mains which we used to solve linear PDEs with constant
wavespeed and nonlinear problems where the maximum wave-
speed is bounded. We also prototyped a parallel version
for 1D×time that leverages the mutual independence of any
two patches over the same front. Since the patches can be
solved independently of each other, we were able to solve
them simultaneously on different processors. We used the
CHARM++ parallel language and runtime system [11] de-
veloped by the Parallel Programming Group at the Univer-
sity of Illinois [10] to manage interprocessor communication,
load balancing, and the automatic dispatch and scheduling
of patches to be solved. In our preliminary experiments, we
observed a parallel speedup of about 20. We observed that
the speedup was limited mainly by the mesh generation,
which was not running in parallel.

We are also investigating spacetime discontinuous Galerkin
methods for nonlinear conservation laws. In such problems,
the wavespeed is not constant throughout the spacetime do-
main. Instead, the wavespeed is one of the physical pa-
rameters governed by the underlying PDE, and can there-
fore change in unpredictable ways. We have extended Tent
Pitcher to adapt the number and duration of spacetime el-
ements to changing wavespeeds, for problems defined over
one- and two-dimensional spatial domains. As in the cur-
rent paper, the major theoretical bottleneck lies in develop-
ing appropriate progress constraints. We have implemented
our algorithm for nonlinear problems in 1D×time, and we
are currently implementing the algorithm in 2D×time. We
expect to publish these results in a subsequent paper.

We are also working on combining the mesh refinement
with adaptivity to local wavespeeds. We plan to implement
this combined, completely adaptive algorithm in parallel.

307

(a) (b)

(c) (d)

Figure 10. Adaptive solution of the crack-tip wave scattering problem. (a)–(b) The shock front approaching the crack surface from above.
(c)–(d) The initial scattering pattern after reflection off the crack surface.

(a) (b)

Figure 11. Spacetime mesh for the crack-tip wave scattering problem: (a) overview; (b) detail of the initial crack-tip wave scattering pattern.

308

Finally, we would like to extend all the current results to
higher dimensions, specifically to 3D×time. For the actual
mesh refinement, we can directly use the generalization of
newest-vertex bisection to three dimensions by Bänsch [3]
and others [2, 5, 13, 14, 16, 17]. Again, the main theoreti-
cal hurdle in higher dimensions is deriving minimal progress
constraints that guarantee that the front can always ad-
vance. Another concern is to be able to describe the con-
straints in such a fashion that they are easy to implement.
Up to our current work in 2D×time, we have encountered
only a constant number of linear constraints per element.
It seems likely that such constraints that can be described
analytically should suffice in higher dimensions, but it is not
clear that they are the best possible.

Acknowledgments

The authors thank the other members of the CPSD space-
time discontinuous Galerkin group—Jonathan Booth, David
Bunde, Morgan Hawker, Mark Hills, Katarina Jegdic, Robert
Jerrard, Sanjay Kale, Yangsuk Ko, Jayandran Palaniappan,
and Boris Petracovici—for several helpful comments and dis-
cussions. Shripad Thite thanks Alper Üngör for his encour-
agement.

References
[1] A. Adler. On the bisection method for triangles. Math.

Comp. 40(162):571–574, 1983.
[2] D. N. Arnold, A. Mukherjee, and L. Pouly. Locally adaptive

tetrahedral meshes using bisection. SIAM J. Sci. Comput.
22(2):431–448, 2001.

[3] E. Bänsch. Local mesh refinement in 2 and 3 dimensions.
Impact of Computing in Science and Engineering 3:181–191,
1991.

[4] M. Bern and P. Plassmann. Mesh generation. Handbook of
Computational Geometry, 291–332, 2000. Elsevier Science
Publishers B.V. North-Holland.

[5] J. Bey. Tetrahedral grid refinement. Computing 55(4):355–
378, 1995.

[6] B. Cockburn and P. A. Gremaud. Error estimates for finite
element methods for hyperbolic conservation laws. SIAM J.
Num. Anal. 33:522–554, 1996.

[7] B. Cockburn, G. Karniadakis, and C. Shu, editors. Discon-
tinuous Galerkin Methods: Theory, Computation and Ap-
plications. Lecture Notes in Computational Science and En-
gineering 11, Springer-Verlag, 2000.

[8] J. Erickson, D. Guoy, J. M. Sullivan, and A. Üngör. Building
space-time meshes over arbitrary spatial domains. Proc. 11th
Int. Meshing Roundtable, 391–402, 2002.

[9] M. T. Jones and P. E. Plassmann. Adaptive refinement of un-
structured finite-element meshes. Finite Elements in Analy-
sis and Design 25:41–60, 1997.

[10] L. V. Kalé et al. Parallel Programming Laboratory, Com-
puter Science Department, University of Illinois. 〈http://
charm.cs.uiuc.edu/〉.

[11] L. V. Kalé and S. Krishnan. Charm++: Parallel program-
ming with message-driven objects. Parallel Programming us-
ing C++, 175–213, 1996. MIT Press.

[12] B. Kearfott. A proof of covergence and an error bound for the
method of bisection in R

n. Math. Comp. 32(144):1147–1153,
1978.

[13] A. Liu and B. Joe. On the shape of tetrahedra from bisection.
Math. Comp. 63(207):141–154, 1994.

[14] A. Liu and B. Joe. Quality local refinement of tetrahedral
meshes based on bisection. SIAM J. Sci. Comput. 16:1269–
1291, 1995.

[15] R. B. Lowrie, P. L. Roe, and B. van Leer. Space-time
methods for hyperbolic conservation laws. Barriers and
Challenges in Computational Fluid Dynamics, 79–98, 1998.

ICASE/LaRC Interdisciplinary Series in Science and Engi-
neering 6, Kluwer.

[16] J. M. Maubach. Local bisection refinement for n-simplicial
grids generated by reflection. SIAM J. Sci. Comput. 16:210–
227, 1995.

[17] A. Merrouche, A. Selman, and C. Knopf-Lenoir. 3D adaptive
mesh refinement. Communications In Numerical Methods In
Engineering 14:397–407, 1998.

[18] W. F. Mitchell. Unified multilevel adaptive finite element
methods for elliptic problems. Ph. D. thesis, Computer Sci-
ence Department, University of Illinois, Urbana, IL, 1988.
Tech. Rep. UIUCDCS-R-88-1436.

[19] W. F. Mitchell. A comparison of adaptive refinement tech-
niques for elliptic problems. ACM Trans. Math. Soft 15:326–
347, 1989.

[20] W. F. Mitchell. Adaptive refinement for arbitrary finite-
element spaces with hierarchical bases. J. Comp. Appl.
Math. 36:65–78, 1991.

[21] J. Palaniappan, R. B. Haber, and R. L. Jerrard. A spacetime
discontinuous galerkin method for scalar conservation laws.
Comp. Methods Appl. Mechs. Engng. , 2004. in press.

[22] G. R. Richter. An explicit finite element method for the wave
equation. Applied Numerical Mathematics 16:65–80, 1994.

[23] M. C. Rivara. Algorithms for refining triangular grids suit-
able for adaptive and multigrid techniques. Internat. J. Nu-
mer. Methods Eng. 20:745–756, 1984.

[24] M. C. Rivara. A grid generator based on 4-triangles conform-
ing mesh-refinement algorithms. Internat. J. Numer. Meth-
ods Eng. 24(7):1343–1354, 1987.

[25] M. C. Rivara. Local modification of meshes for adaptive
and/or multigrid finite element methods. J. Comp. Appl.
Math. 36:79–89, 1991.

[26] I. G. Rosenberg and F. Stenger. A lower bound on the angles
of triangles constructed by bisecting the longest side. Math.
Comput. 29:390–395, 1975.

[27] E. G. Sewell. Automatic generation of triangulations for
piecewise polynomial approximation. Ph. D. thesis, Depart-
ment of Mathematics, Purdue University, West Lafayette,
IN, 1972.

[28] A. Sheffer, A. Üngör, S.-H. Teng, and R. B. Haber. Gener-
ation of 2D space-time meshes obeying the cone constraint.
Advances in Computational Engineering & Sciences, 1360–
1365, 2000. Tech Science Press.

[29] M. Stynes. On faster convergence of the bisection method for
all triangles. Math. Comp. 35(152):1195–1201, 1980.

[30] J. P. Suárez, A. Plaza, and G. F. Carey. Propagation path
properties in iterative longest-edge refinement. Proc. 12th
Internat. Meshing Roundtable, 79–90, 2003. 〈http://www.
andrew.cmu.edu/user/sowen/abstracts/Su983.html〉.

[31] L. L. Thompson. Design and Analysis of Space-Time and
Galerkin Least-Squares Finite Element Methods for Fluid-
Structure Interaction in Exterior Domains. Ph.D. thesis,
Stanford University, 1994.

[32] A. Üngör, C. Heeren, X. Li, A. Sheffer, R. B. Haber, and S.-
H. Teng. Constrained 2D space-time meshing with all tetra-
hedra. Proc. 16th IMACS World Congress, 2000.

[33] A. Üngör and A. Sheffer. Pitching tents in space-time: Mesh
generation for discontinuous Galerkin method. Int. J. Foun-
dations of Computer Science 13(2):201–221, 2002.

[34] A. Üngör, A. Sheffer, R. B. Haber, and S.-H. Teng. Layer
based solutions for constrained space-time meshing. Appl.
Numer. Math. 46:425–443, 2003.

[35] L. Yin. A Spacetime Discontinuous Galerkin Finite-Element
Method for Elastodynamic Analysis. Ph. D. thesis, Depart-
ment of Theoretical & Applied Mechanics, University of Illi-
nois, Urbana, IL, 2002.

[36] L. Yin, A. Acharya, N. Sobh, R. Haber, and D. A. Tor-
torelli. A space-time discontinuous Galerkin method for elas-
todynamic analysis. Discontinuous Galerkin Methods: The-
ory, Computation and Applications (B. Cockburn, G. Kar-
niadakis, and C. Shu, eds.), pp. 459–464. Springer-Verlag,
2000.

309

