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Summary. We review recent progress in applying spacetime discontinuous Galerkin
(SDG) finite element methods to problems whose solutions exhibit various types of
moving discontinuities. SDG models and related solution methods offer a number
of attractive features, including element-wise satisfaction of the governing balance
laws, linear computational complexity in the number of spacetime elements, and a
computational structure that readily supports parallel implementations. We describe
the use of new unstructured spacetime meshing procedures ind discretizing evolving
discontinuities. Specifically, we show how h-adaptive spacetime meshing can be used
to capture weak shocks in linear elastodynamics, how the SDG framework provides a
convenient setting for implementing cohesive models for dynamic fracture, and how
more advanced spacetime meshing procedures can deliver sharp representations of
discontinuous solution features by tracking the trajectories of contact discontinuities
in compressible gas dynamics.
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1 Introduction

1.1 Numerical Representations of Evolving Discontinuities

Discontinuous fields are common in continuum physics, yet their accurate
representation remains one of the most challenging problems in computa-
tional mechanics, especially when the loci of singular surfaces evolve during
the course of a simulation and are unknown a priori. Examples of evolving
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discontinuities include shocks in solid and fluid dynamics, growing cracks and
moving phase boundaries arising in heterogeneous flows or the microstructures
of solid materials.

Standard conforming finite element models do not admit discontinuous
functions. However, even for various nonconforming models that admit dis-
continuities, singular surfaces are generally restricted to discrete, mesh-related
manifolds whose trajectories must be aligned with the discontinuous solution
features to obtain an accurate result. This alignment poses special challenges,
especially in problems where singular surfaces nucleate spontaneously or alter
their connectivity through self-intersection. Beyond simply admitting discon-
tinuous solution features in the discrete model, it is critical to enforce the
correct jump conditions arising from the relevant balance laws and to respect
the relevant interface kinetics to obtain a physically meaningful model.

Discretizing evolving discontinuities remains a ubiquitous and challenging
problem in computational science and engineering and an active area in nu-
merical methods research. We do not attempt a comprehensive review here.
Instead, the following subsections identify some of the primary classes of avail-
able methods for resolving discontinuous fields, particularly those related to
the methods presented in the later sections of this work. Our focus is primarily
on finite element methods that address this issue.

Discontinuity/Shock Capturing with h-Refinement

We refer to methods that attempt to approximate discontinuous solution fields
in continuous solution spaces as capturing methods ; these are by far the most
popular approach. The main advantage of this approach is that no special
meshing procedures are needed to make the grid conform to evolving dis-
continuities, especially when the connectivities of singular surfaces change
over time. The mesh might be Lagrangian or Eulerian and structured or
unstructured, depending on the problem at hand. The solution space must
be sufficiently enriched so that the continuous approximations of jumps are
sufficiently sharp. Satisfying this requirement for problems with evolving dis-
continuities on a static grid can be prohibitively expensive, so some form of
adaptive analysis is desirable, even though the mesh is not required to track
the discontinuity.

Conforming finite element methods based on Bubnov-Galerkin projections
suffer severe numerical artifacts and might even fail, especially for hyperbolic
and hyperbolic-parabolic problems, when applied to problems with discon-
tinuous soltuions. Non-local Gibbs oscillations as well as overshoot and un-
dershoot at shocks are common problems. There is an extensive literature on
stabilized finite element methods and shock-capturing operators to address
these problems. The streamline upwind Petrov-Galerkin (SUPG) method, the
Galerkin/least squares (GLS) method and the use of bubble functions exem-
plify successful finite element techniques for this class of problems (see for
example, [8,9,23,24,26,42]). The formulation of new methods with improved
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shock-capturing properties remains an active research area; recent contribu-
tions include spectral vanishing viscosity methods [27, 44] and sub-cell shock
capturing [39].

Cohesive Damage Models for Fracture

Cohesive damage models, first introduced by Dugdale [15] and Barenblatt [5],
simulate crack initiation and growth by modeling the macroscopic effects of
various nonlinear damage processes in the neighborhood of the crack tip.
A constitutive traction–separation law (TSL) describes the traction acting
on a cohesive interface as a nonlinear, bounded function of the separation
across the interface [20, 34, 35, 45, 49, 51]. The TSL eliminates the crack-tip
stress singularities that arise in classical fracture mechanics and introduces a
microscopic length scale that is essential to the fracture model [19].

Numerical implementations of cohesive damage models present three spe-
cial requirements: the model must admit jumps in the displacement field across
cohesive surfaces, there must be a mechanism for enforcing the traction–
separation law, and there must be sufficient enrichment to capture the evol-
ution of mechanical fields associated with growing cracks. Special cohesive
elements embedded in a mesh of conforming finite elements provide a com-
mon means to address the first two requirements [10,13,49]. The cohesive ele-
ments discretize the cohesive interface and the TSL is incorporated into their
constitutive model. Alternatively, the cohesive law can also be enforced as a
boundary condition on the cohesive interface [34,45]. More recently, partition
of unity, extended finite element or generalized finite element methods have
emerged as alternative means to model cracks and cohesive interfaces within
finite elements (as opposed to exclusively at boundaries) [6, 14, 31–33, 48].
These methods relax the coupling between the mesh geometry and the crack
path.

Sufficient grid refinement is required to capture the detailed response in
the vicinity of the active process zone and to enforce accurately the nonlinear
traction–separation law. Numerical instabilities can arise if a minimum level
of mesh refinement is not realized along the cohesive process zone [20]. The
pattern of refinement must evolve to track the moving process zones as a
crack propagates. Schrefler et al. periodically remesh the structure to model
this phenomenon in quasi-static fracture analysis [41]. In the case of dynamic
fracture, mesh refinement must also track the trajectories of sharp wavefronts
that are either emitted by moving crack tips or generated by shock loading.
Adaptive refinement algorithms can guarantee accuracy and stability, while
avoiding the prohibitive expense of uniform mesh refinement. Pandolfi and
Ortiz adaptively insert cohesive elements to follow arbitrary crack paths in
fragmentation studies [38]. A recent adaptive analysis procedure by Krysl and
Belytschko [28] employs an element-free Galerkin method to simplify adaptive
refinement and track the crack in an arbitrary direction.
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Tracking Methods

We use the term discontinuity tracking to describe methods that attempt to
model solution discontinuities with true jumps in the discrete solution space by
aligning certain mesh features that accommodate jumps with evolving discon-
tinuous features. The most common choice is to associate jumps with element
boundaries, but recent applications of extended finite element methods [53]
and related partition of unity methods [4] allow greater flexibility by allowing
discontinuities to pass through element interiors. However, it is still necessary
to align integration cells with intra-element discontinuities and to respect the
usual geometric quality constraints on the subdivided element domains.

The mesh must track discontinuities continuously through a time step in
dynamics applications, rather than simply update the mesh between time
steps. Thus, some form of moving-grid method is required. The Arbitrary
Lagrangian–Eulerian (ALE) methods were among the first finite element pro-
cedures to implement this strategy [22]; there have been numerous applica-
tions since (see for example, [30]). In contrast to capturing methods, tracking
methods’ support for true jumps in the discrete solution also presents an
opportunity to address the associated jump conditions in the formulation.

On the other hand, continuous tracking methods introduce a number of
complications. Moving meshes distort element geometries and eventually trig-
ger re-meshing operations to (if constraints on minimum element quality are
enforced). Unfortunately, re-meshing itself generates significant errors as the
solution is projected from the old mesh to the new. One can limit the mesh
distortion by moving free nodes in concert with the motions of nodes con-
strained to follow a moving singular surface, but this usually adds cost and
complexity to the algorithm. In Lagrangian formulations, moving mesh meth-
ods generate convective terms that might require special treatment in the
finite element formulation. Finally, tracking methods can become intractable
when the connectivities of singular surfaces evolve during the course of the
simulation. Nonetheless, for problems where they are feasible, their ability to
render true discontinuities without strong mesh refinement while enforcing
the proper jump conditions often make tracking methods the most accurate
and least expensive option for discretizing a discontinuity.

Implicit geometry models, such as level set methods [36], provide a power-
ful approach for modeling evolving interfaces with complex geometry and
varying connectivity (see for example, [17]). These methods combine aspects
of capturing and tracking methods; although the level-set contour tracks the
evolving interface, a capturing method is typically used (often on a fixed Eu-
lerian grid) to model the discontinuous response.

1.2 Spacetime Discontinuous Galerkin Methods

This contribution reviews recent progress in the use of adaptive spacetime
discontinuous Galerkin (SDG) finite element methods for tracking evolving
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discontinuities. See [12] for a survey of discontinuous Galerkin finite element
methods. In this work, our focus is on spacetime discontinuous Galerkin (SDG)
methods that involve direct discretization of spacetime domains and that
use basis functions that are fully discontinuous across all spacetime element
boundaries. When applied to hyperbolic problems and implemented on suit-
ably constructed spacetime grids, SDG methods support efficient element-
by-element or patch-by-patch solution procedures [2, 11, 25, 29, 40, 50]. SDG
solution methods share a number of attractive features:

• element-wise satisfaction of the governing balance/conservation laws
• linear computational complexity in the number of spacetime elements (for

fixed polynomial order)
• support for high-order approximations on a fixed, compact stencil
• support for spacetime adaptive meshing operations with zero projection

error
• a computational structure that lends itself to parallel implementations

The discontinuous nature of the SDG basis functions might appear to ad-
dress directly the problem of discretizing evolving discontinuities. Indeed, we
illustrate the use of this property for discretizing growing cracks and mov-
ing contact discontinuities in Subsections 5.2 and 5.3 below. However, these
techniques require a careful alignment between the spacetime grid and the
trajectories of singular surfaces that might not be easy to achieve. Especially
in cases where the connectivity of the discontinuous features changes over
time, the flexibility of spacetime adaptive meshing and the accuracy delivered
by the element-wise balance properties are of equal or greater importance in
capturing moving discontinuities. We demonstrate both approaches below.

1.3 Organization of This Paper

The remaining content of this paper is organized as follows. Section 2 intro-
duces the special notation based on the exterior calculus and differential forms
used to formulate our spacetime methods. Section 3 presents summaries of the
SDG formulations for linear elastodynamics and for the inviscid Euler equa-
tions for gas dynamics that support the numerical examples in this paper.
Explanations of our spacetime meshing procedures and the patch-by-patch
SDG solution procedure they support appear in Section 4. Section 5 presents
three applications of the SDG method to modeling evolving discontinuities.
These cover capturing weak shocks in elastodynamics via h-adaptive space-
time meshing, implementation of a cohesive damage model for elastodynamic
crack growth within the SDG framework, and a study of the use of interface
tracking in spacetime for modeling a moving contact discontinuity in a shock
tube simulation. Section 6 presents conclusions and prospects for further de-
velopment.
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2 Differential Forms and Notation

This section introduces special notation used in our spacetime formulations
that accesses the mathematical machinery of differential forms and the exter-
ior calculus on manifolds. See [7, 18, 43] for a more complete development of
these subjects and [2] for more detail on our particular usage. While this nota-
tion is non-standard in mechanics it provides a direct coordinate-free notation
for the spacetime setting that delivers similar advantages to those offered by
direct tensor notation in the purely spatial setting. In particular, we obtain a
simple and intuitive means for expressing balance and conservation laws over
arbitrary spacetime subdomains that automatically include the relevant jump
conditions on the spacetime trajectories of singular surfaces.

Let d be the spatial dimension, and let the reference spacetime analysis
domain D be an open (d + 1)-manifold in E

d × R with a regular boundary.
The spacetime coordinates

(
x1, . . . , xd, t

)
are the spatial coordinates followed

by the time coordinate and are defined with respect to the ordered basis
(e1, . . . , ed, et). The dual basis is

(
e1, . . . , ed, et

)
. We follow the standard sum-

mation convention; latin indices range from 1 through d, except the index ‘t’
which denotes time and does not imply summation when repeated.

The top form on D is Ω := dx1 ∧ . . .∧dxd ∧dt, where we make use of the
standard ordered basis for 1-forms:

(
dx1, . . . ,dxd,dt

)
. The standard ordered

basis for d-forms is (dx̂1, . . . ,dx̂d, �dt), in which dx̂j := �dxj where � is the
Hodge star operator. Thus, dxj∧dx̂k = δj

kΩ;dt∧dx̂k = 0; dt∧�dt = Ω; and
dxj ∧ �dt = 0. We identify dx̂j and �dt with, respectively, the differential
spacetime volume element that is the geometric dual of ej and the purely
spatial differential volume element. We use i := iet to denote the temporal
insertion operator.

We use forms with scalar and tensor coefficients to develop our theory. Bold
Italic symbols denote forms (with either scalar or tensor coefficients), while
bold non-Italic symbols denote vector and tensor fields on D. We introduce a
special 1-form with vector coefficients, dx := eidxi, and a special d-form with
vector coefficients, �dx := eidx̂i. We define the exterior product of two forms
with tensor coefficients as

aψ ∧ bω := a(b)(ψ ∧ ω) (1)

in which a and b are tensor fields on D of orders m and n respectively (m ≥ n),
and ψ and ω are p and q-forms on D such that p + q ≤ d + 1.

3 Formulations

This section presents brief reviews of the SDG formulations for linearized
elastodynamics and the Euler equations for inviscid gas dynamics. Component
expansions are provided to illuminate the relationship between the differential
forms expression. More detailed formulations can be found in the references
cited below.
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3.1 Elastodynamics

This subsection presents a summary of a single-field SDG formulation of lin-
earized elastodynamics [2]. The displacement field u = uiei, the primary
solution variable on D, is related to the strain and velocity 1-forms according
to

E = E ∧ dx = Eijei ⊗ ej ∧ ekdxk = Eijeidxj (2)
v = u̇dt = u̇ieidt (3)

where E = sym ∇u. These two kinematic quantities sum to form a single
spacetime 1-form ε called the strain-velocity:

ε := E + v (4)

The fundamental force-like quantities are the stress and linear momentum
density d-forms given by

σ := σ̄ ∧ �dx = σijei ⊗ ej ∧ ekdx̂k = σijeidx̂j (5)
p := p�dt = ρu̇iei�dt (6)

where σ̄ is the symmetric Cauchy stress tensor, p is the linear momentum
density vector and ρ is the mass density. The standard relationship of linear
elasticity between ε and σ̄ is strongly enforced. The restriction of σ to a
spacetime d-manifold Γ with arbitrary orientation delivers the surface traction
tΓ acting on Γ : σ|Γ = tΓ .

The spacetime momentum flux M is defined as

M := σ − p (7)

such that the restriction of M to Γ delivers the flux of linear momentum across
Γ . The exterior derivative of M is the (d + 1)-form whose vector coefficient
is the residual of the homogeneous Equation of Motion:

dM = (∇ · σ̄ − ṗ) Ω =
(
σ̄ij

,j − ρüi
)

eiΩ (8)

The body force is given by the (d + 1)-form, b = bΩ = bieiΩ, where b is the
body force vector per unit mass. Thus, the vector coefficient of the (d+1)-form
dM + ρb is the residual of the Equation of Motion.

Consider the integral form of Balance of Linear Momentum,
∫

∂Q

M +
∫

Q

ρb = 0 ∀Q ⊂ D ⇒
∫

Q

(dM + ρb) = 0 ∀Q ⊂ D (9)

in which subdomains Q are assumed to have regular boundaries, and we use
the Stokes Theorem to eliminate the boundary flux integral. Let Γ J be the
union of jump manifolds on D where M and ε are possibly discontinuous.
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Apply the Localization Theorem to (9) to obtain the Equation of Motion,
including the jump part of dM , denoted [M ], on Γ J ∪ ∂D:

(dM + ρb)|D\Γ J = 0 (10a)

[M ]|Γ J∪∂D = 0 (10b)

We replace (10b) with a stronger condition,

(M∗ − M)|Γ J∪∂D = 0 (11)

in which M∗ is either a Godunov or prescribed value of the momentum flux.
In the SDG setting, we introduce a mesh partition P of D into finite ele-

ments, and introduce a discrete bases so that M and ε are continuous within
each element but are possibly discontinuous across element boundaries. Then
the strong form of balance of linear momentum augmented by a kinematic
compatibility condition can be expressed as follows. Let V Q be the solution
space for the displacement field on element Q ∈ P . We then have the following
strong form and weighted residual statement:

Problem 1 (Strong Form). For each Q ∈ P , find u ∈ V Q such that

dM + ρb = 0 in Q (12a)
(M∗ − M)|∂Q = 0 (12b)

(ε∗ − ε)|∂Q = 0 (12c)
(u∗

0 − u0)�dt|∂Qti = 0 (12d)

in which u0 is a projection of the displacement solution u into a subspace
with vanishing total energy, ∂Qti is the time-inflow boundary of Q and the
values M∗, ε∗ and u∗

0 are either Godunov or prescribed values, as described
below. The jump conditions (12c,d) enforce kinematic boundary conditions
and compatibility across element boundaries.

Problem 2 (Weighted Residual Statement). For each Q ∈ P , find u ∈
V Q such that ∀û ∈ V Q,

∫

Q

˙̂u ∧ (dM + ρb) +
∫

∂Q

{
˙̂u ∧ (M∗ − M) + (ε∗ − ε) ∧ iσ̂

}

+
∫

∂Qti
kû ∧ (u∗

0 − u0)�dt = 0 (13)

in which û is the weighting function, and k is a constant introduced for di-
mensional consistency.

An application of the Stokes Theorem leads to the weak problem statement:

Problem 3 (Weak Form). For each Q ∈ P , find u ∈ V Q such that ∀û ∈
V Q,
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∫

Q

(−d ˙̂u ∧ M + ˙̂u ∧ ρb) +
∫

∂Q

{
˙̂u ∧ M∗ + (ε∗ − ε) ∧ iσ̂

}

+
∫

∂Qti
kû ∧ (u∗

0 − u0)�dt = 0 (14)

Replacing V Q in Problem 3 with a discrete subspace, V Q
h ⊂ VQ, generates the

SDG finite element formulation. It is easy to show that the discrete form of
Problem 3 balances both linear and angular momentum over every spacetime
element [2].

We define the target boundary values of M and ε for each Q ⊂ D:

M∗ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

M on ∂Qco ∪ (∂Q ∩ ∂Dε)
M+ on ∂Qci \ ∂Dci

MG(M , M+, a∂Q) on ∂Qnc \ ∂Dnc

M on ∂Q ∩
(
∂Dci ∪ ∂DM

)
(15a)

ε∗ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ε on ∂Qco ∪
(
∂Q ∩ ∂DM

)

ε+ on ∂Qci \ ∂Dci

εG(ε, ε+, a∂Q) on ∂Qnc \ ∂Dnc

ε on ∂Q ∩
(
∂Dci ∪ ∂Dε

)
(15b)

in which M and ε are traces of interior fields on Q, M+ and ε+ are traces
of exterior fields on Q, ∂Qco is the causal (space-like) outflow boundary of Q,
∂Qci (∂Dci) is the causal inflow boundary of Q (D), and ∂Qnc (∂Dnc) is the
non-causal (time-like) boundary of Q (D). The non-causal domain boundary
∂Dnc is partitioned into disjoint parts, ∂DM and ∂Dε, where M and ε are
determined by the prescribed functions M and ε. The Godunov values, MG

and εG, are obtained from the solutions to local Riemann problems [2].

3.2 Euler Equations

We define the conservation fields: mass density ρ, linear momentum density
p = ρv, and total energy denstiy E = e+ 1

2 |v|2 where e is the specific internal
energy. Let p = ρe

γ−1 be the pressure with adiabatic index γ and σ̄ = pδijei⊗ej

be the stress. The spacetime conservation fluxes and their exterior derivatives
are

Fρ = ρ�dt + ρv ∧ �dx dFρ = (ρ̇ + ∇ · ρv) Ω (16a)
Fp = p�dt + (p ⊗ v − σ̄) ∧ �dx dFp = [ṗ + ∇ · (p⊗ v − σ̄)] Ω (16b)

FE = E�dt + [Ev + σ̄(v)] ∧ �dx dFE =
{
Ė + ∇ · [Ev + σ̄(v)]

}
Ω(16c)

Note that the exterior derivatives render local residual forms of conservation
of mass, linear momentum and energy. We rewrite the fluxes in (16) in vector
format as
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F :=

⎧
⎨

⎩

Fρ(q)
Fp(q)
FE(q)

⎫
⎬

⎭
q :=

⎧
⎨

⎩

ρ
p
E

⎫
⎬

⎭
. (17)

Following arguments similar to those in the previous subsection, we write the
integral and local forms of the system conservation statement ∀Q ⊂ D:

∫

∂Q

F = 0 ⇔
{

dF |Q = 0
[F ]|∂Q = (F ∗ − F )|∂Q = 0.

(18)

We use Godunov values for the fluxes F ∗; this ensures satisfaction of the
entropy inequality over each subdomain Q.4 The jump conditions in (18) are
the Rankine-Hugoniot conditions that govern the motions of shocks.

We introduce a discrete subspace V Q
h and apply a simple Bubnov-Galerkin

projection to develop the SDG weighted residual statement and the weak form
used for numerical implementation.

Problem 4 (SDG Weighted Residual Statement). For each Q ∈ P(D),
find q ∈ V Q

h such that
∫

Q

q̂ ∧ dF +
∫

∂Q

q̂ ∧ (F ∗ − F ) = 0 ∀q̂ ∈ V Q
h . (19)

Problem 5 (SDG Weak Statement). For each Q ∈ P(D), find q ∈ V Q
h

such that
−

∫

Q

dq̂ ∧ F +
∫

∂Q

q̂ ∧ F ∗ = 0 ∀q̂ ∈ V Q
h (20)

A piece-wise constant choice for q̂ in (20) proves element-wise conservation:
∫

∂Q

F ∗ = 0 ∀Q ∈ P(D) (21)

In general, stabilization is required to control local overshoot and to ensure
a robust numerical method. However, in problems with convex flux functions
and where a limited amount of overshoot is acceptable, the basic method
presented here can be applied.

4 Causal Spacetime Meshing and Patch-wise Solution
Procedure

The construction of causal spacetime meshes and a patch-by-patch solution
procedure with linear computational complexity in the number of patches,
as described in [1, 2, 37], are key aspects of our implementation of the SDG

4 This has been proven only for scalar case in [37].
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method. We briefly summarize these concepts here; the reader is referred
to [1, 2, 37] for a more detailed treatment.

We use an advancing-front mesh generation procedure called Tent Pitcher
[16,46] to construct spacetime meshes in 2D × time that satisfy a patch-wise
causality condition. A patch is a collection of contiguous tetrahedral spacetime
elements whose boundary is, therefore, a collection of spacetime triangles. A
triangle is causal if all the characteristics of the governing hyperbolic equations
have the same orientation relative to the triangle at all points on the triangle.
A patch is causal if all its boundary faces are either causal or part of the
domain boundary. This implies that each boundary face of a causal patch can
be classified as either an inflow, outflow or boundary face depending on the
face’s location and whether the characteristic flow across the face is inward or
outward relative to the patch. Since no information can enter a patch through
its outflow faces, the solution in each patch depends only on characteristic
data flowing through its inflow and boundary faces. This implies a dependency
graph that defines a partial ordering of patches wherein the solution on each
patch depends only on boundary data and solutions on earlier patches in the
partial ordering. Thus, patches can be solved locally, without approximation,
using only boundary data and outflow data from previously-solved patches.
Inter-element boundaries within a patch can be noncausal, so the elements
within a patch must, in general, be solved simultaneously.

Tent Pitcher begins with a constant-time triangulation of the spatial do-
main at the initial time of the analysis interval. It then visits each vertex in
the triangulation in turn to construct a new patch. The basic tent pitching
procedure involves advancing a vertex in time to construct a new “tent pole”
and then constructing a set of tetrahedra surrounding the tent pole to form a
new patch. The height (duration) of the tent pole is limited to ensure that the
outflow faces of the new patch are all causal. The tent-pole height might be
further limited by a progress constraint to ensures that it is always possible
to continue to pitch new patches. The product of the tent-pitching algorithm
is an unstructured, patch-wise causal spacetime mesh. The local nature of the
causality condition only enforces a local restriction on the duration of indi-
vidual patches, similar to a CFL condition; there is no global restriction on
the time step size, as in conventional explicit time-marching schemes. Thus,
patches containing elements with larger spatial diameters and slower wave
speeds can have longer durations than patches with smaller spatial diameters
and higher wave speeds.

Our solution procedure interleaves mesh generation with the finite element
solution; we compute the finite element solution on each patch as soon as it is
generated by Tent Pitcher. Since the number of tetrahedral elements within
a patch is limited by the highest vertex degree in the space triangulation,
and because the highest polynomial order in each element is bounded, we can
show that this patch-by-patch solution procedure has linear complexity in the
number of spacetime patches. There is no need to assemble and store a global
system of equations; the finite element routines are written to solve a single
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patch at a time in a serial implementation. In a parallel computation, on the
other hand, multiple tents can be pitched and solved simultaneously on sep-
arate processors, subject only to the partial ordering constraint for patches.
The local character of the algorithm reduces the need for interprocessor com-
munication.

5 Applications

This section presents three example applications that demonstrate different
ways SDG finite element models can be used to model solutions with evolving
discontinuities.

5.1 Discontinuity Capturing Using Adaptive Spacetime Meshing

We next present a brief review of how h-adaptive spacetime meshing can be
used to capture weak shocks in elastodynamics, as reported in [3].5 We seek
local refinement along the trajectories of shocks, so that refinement in one
location does not impose a global restriction on the durations of elements
elsewhere in the spacetime analysis domain. Although the SDG formulation
for elastodynamics presented in Subsection 3.1 balances linear and angular
momentum over every spacetime element to within machine precision, the
method is dissipative, and energy is generally not balanced. Experience shows
that an error measure based on element-wise dissipation is an effective indic-
ator for adaptive refinement, both for controlling the overall solution accuracy
and for concentrating refinement along the trajectories of shocks. To achieve
an efficient solution, we attempt to distribute a limited amount of numerical
dissipation evenly over the spacetime elements.

Error Indicator for Element-wise Numerical Dissipation

The numerical energy dissipation for spacetime element Q is given by:

ϕQ =
1
2

∫

∂Q

(u̇∗ ∧ M∗ + ε∗ ∧ iσ∗) +
∫

Q

u̇ ∧ ρb. (22)

Let ϕ∗ be the user-specified target dissipation per element. The dissipation on
element Q is considered acceptable when ϕ ≤ ϕQ ≤ ϕ, where ϕ = (1 − η)ϕ∗

and ϕ = (1 + η)ϕ∗ in which η is a user-specified parameter subject to 0 <
η < 1. Element Q is marked for refinement when ϕQ > ϕ, and element Q
is coarsenable when ϕQ < ϕ. Otherwise, element Q is marked acceptable.
The parameter η must be chosen sufficiently large to minimize undesirable
cycling between coarsening and refinement. We use η = 0.2 in our current
implementation.
5 More precisely, the features in this example are sharp wavefronts that approximate

weak shocks. In the interest of conciseness, we nonetheless refer to these solution
features as shocks.
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Adaptive Tent Pitcher Algorithm

We use an adaptive extension of the Tent Pitcher algorithm to implement
adaptive refinement and coarsening within our patch-by-patch, advancing-
front solution algorithm. Rather than adapting patches of spacetime elements
directly, Tent Pitcher implements adaptive refinement by managing the tri-
angulation of the current front. Each time a patch is solved, the solver checks
whether any elements in the patch have been marked for refinement. If the
result is positive, then the dissipation error is deemed unacceptable, and the
solver rejects the patch when it is returned to Tent Pitcher. Tent Pitcher,
in turn, discards the rejected patch and, using a newest-vertex-bisection al-
gorithm [1], refines the triangles on the current mesh front that correspond
to the elements marked for refinement. This effectively refines the subsequent
spacetime mesh in both space and time when tent pitching is resumed, because
the causality constraint dictates shorter tent-pole heights (local time steps)
at vertices associated with refined triangles. Note that Tent Pitcher discards
only the solution on the rejected patch. The solutions on all previously-solved
patches are unaffected due to the patch-wise causal structure of the spacetime
grid, so the amount of redundant calculation due to refinement is small.

Tent Pitcher accepts the solution on the current patch if all elements in the
patch are either acceptable or coarsenable. In this case, Tent Pitcher stores
the patch solution, advances the mesh front, and copies the status (accept-
able or coarsenable) from the patch elements to the corresponding facets of
the new mesh front. Requests for coarsening need not be acted on immedi-
ately, since they do not involve unacceptable error. Tent Pitcher’s coarsening
operation involves deleting a degree-4 vertex so as to merge two pairs of ad-
jacent, coarsenable triangles into two two triangles in the active mesh front.
A vertex can be deleted when all of the triangles surrounding it are marked
coarsenable. In order to maintain the integrity of the spacetime grid, each pair
of triangles must be coplanar before the coarsening operation can be executed.
Typically, this requirement is not satisfied immediately, so Tent Pitcher post-
pones coarsening until it has pitched new tent poles with heights adjusted to
meet the coplanarity constraint.

Numerical Example: Crack-Tip Wave Scattering

We next review results reported in greater detail in [2] that demonstrate the
ability of the SDG formulation with adaptive spacetime meshing to capture
shock-like features in elastodynamics. Figure 1 shows a center-cracked plate
that we model using plane-stress assumptions, Young’s modulus E = 10,
Poisson ratio ν = 0.3, and density ρ = 2. A spatially uniform tensile traction of
magnitude T acts along the top and bottom edges of the plate. The magnitude
T ramps rapidly from zero at time t = 0.0 to a maximum value of 10 at
time t = 0.002 to approximate a weak stress-velocity shock; T holds constant
at the maximum value until the simulation interval terminates at time t =
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Fig. 1. Spatial domain and boundary conditions for the crack scattering problem

Fig. 2. Adaptive spacetime mesh for crack-tip wave scattering problem with 11
million tetrahedra (intermediate stage, front is at roughly t = 0.100)

0.300. We enforce symmetry boundary conditions to model only the shaded
region shown in the figure, and we use complete cubic polynomials to model
the displacement field within each spacetime tetrahedron. A uniform 2 × 4
rectangular grid defines the initial space mesh, with each rectangle subdivided
into two triangles.
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Fig. 3. Visualization of elastic wave scattering by a stationary crack-tip at t = 0.105)

Fig. 2 shows the state of the spacetime mesh constructed by the adaptive
Tent Pitcher algorithm at an intermediate stage of the simulation. The spatial
directions are aligned with the horizontal axes, and time increases upward in
the vertical direction. The fine details of the elastodynamic solution are clearly
evident in the pattern of mesh refinement. The dark diagonal bands along the
right face of the spacetime volume are traces of plane-wave shocks generated
by the sudden traction loading, while the lighter diagonal band ascending at
a steeper angle traces the trajectory of a Rayleigh wave moving along the free
edge of the plate. The spacetime trajectory of the crack tip runs along the
vertical center-line of the left face of the spacetime volume. The apex of the
cone-shaped region of mesh refinement indicates the initial scattering event.
The separation of the scattered wave into dilatational and shear components
can be seen in the pattern of refinement. The outer perimeter of the cone
(tangent to the dark band on the top surface due to the plane wave) indicates
the progress of the faster-moving dilatational wave, while the dark circular
band within the cone traces the trajectory of the slower shear wave. In this
example, the ratio of the largest to smallest element diameter is 1024. The
ability of the adaptive SDG method to limit refinement to the trajectories
of moving shocks and the absence of global time-step size constraints yield
significant computational savings.

Fig. 3 shows a visualization of the adaptive solution at roughly the same
time as the top of the spacetime volume in Fig. 2. The images were generated
by a pixel-exact visualization system [52]. The strain energy density field
is mapped to color (rendered as gray scale here); the velocity magnitude is
mapped to the height field, which is then shaded by a lighting model to
reveal its form. The visualization reveals fine features of the solution such
as a Rayleigh wave moving along the crack surface and the scattered shear
and pressure waves emanating from the crack-tip. Small-scale features, such as
the shock fronts, are well resolved. The solution is free of spurious oscillations,



16 R. Abedi et al.

although no extra stabilization was added to the SDG formulation for this
linear problem.

5.2 Cohesive Fracture Model

Cohesive damage models are a popular means for modeling discontinuous de-
formation fields in computational solid mechanics. First introduced by Dug-
dale [15] and Barenblatt [5], these relatively simple models describe fracture
and delamination processes, including an initiation criterion and a means to
calculate the rate of crack extension. They require supplementary criteria
to determine the direction of crack growth. The works of Needleman and
Xu [34,49] led to a strong resurgence of interest in cohesive damage models; the
recent literature is extensive (see for example, [6, 10, 13, 14, 28, 31–33,35, 48]).
We do not attempt a comprehensive literature review here. Rather, we de-
scribe an implementation of the Xu and Needleman traction separation law
for elastodynamic fracture [49] within the adaptive SDG framework described
in the previous subsection. In this context, we note the related work of Huang
and Costanzo [21].

By using cohesive damage models, one attempts to simulate crack initi-
ation and extension by modeling the macroscopic effects of various nonlin-
ear damage processes in the neighborhood of the crack tip. Specifically, a
constitutive traction–separation law (TSL) describes the tractions acting on
a cohesive interface as a nonlinear, bounded function of the interface sep-
aration. The TSL eliminates the crack-tip stress singularities that arise in
classical fracture mechanics and introduces a microscopic length scale that is
essential to the fracture model [19]. We restrict our attention to two spatial
dimensions (d = 2) and to the history-independent, exponential relationship
developed by Xu and Needleman [49], although the computational framework
we describe could be adapted to most other TSLs.

Incorporation of Cohesive Damage Model in SDG Framework

In general, numerical implementations of cohesive damage models present
three special requirements: the numerical model must admit jumps in the
displacement field across cohesive interfaces; there must be a mechanism for
enforcing the traction–separation law; and there must be some form of adapt-
ive enrichment to resolve the active cohesive process zone and to capture the
evolution of mechanical fields associated with growing cracks, including the
sharp wavefronts generated by shock loads and by sudden crack initiation or
arrest. Recalling the discontinuous format of the SDG basis, we address the
first requirement by aligning element boundaries with cohesive interfaces. We
weakly enforce the traction–separation law by introducing a special definition
of the target momentum flux M∗ on cohesive interfaces, as described below.
The adaptive refinement strategy described in the preceding subsection ef-
fectively addresses the third requirement. However, we describe below the use
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of an additional error indicator to ensure that the SDG solution renders the
TSL accurately.

Let ΓC denote the union of all the cohesive-interface trajectories in D,
and modify the partition of the non-causal domain boundary according to
∂Dnc = ∂DM ∪ ∂Dε ∪ ∂DC, where ∂DC = ∂D ∩ ΓC. The only modification
to the elastodynamic formulation required to implement the cohesive model
is to replace (15) with

M∗ =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

M on ∂Qco ∪ (∂Q ∩ ∂Dε)
M+ on ∂Qci \ ∂Dci

MG(M , M+, a∂Q) on ∂Qnc \
(
∂Dnc ∪ ΓC

)

M on ∂Q ∩
(
∂Dci ∪ ∂DM

)

MC on ∂Q ∩ ΓC

(23a)

ε∗ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ε on ∂Qco ∪
[
∂Q ∩

(
∂DM ∪ ΓC

)]

ε+ on ∂Qci \ ∂Dci

εG(ε, ε+,a∂Q) on ∂Qnc \
(
∂Dnc ∪ ΓC

)

ε on ∂Q ∩
(
∂Dci ∪ ∂Dε

)
(23b)

in which MC := s̃dxC, where dxC is the spacetime d-volume element on
ΓC and s̃ is the cohesive traction vector generated by the traction–separation
relation.

We use two adaptive error indicators to ensure accurate solutions for both
the bulk and cohesive responses. The first error indicator is the element-wise
numerical dissipation, as described above. The second indicator uses the L-2
norm of the traction error along the cohesive interface. We use this indicator to
ensure that the finite element tractions match the cohesive traction-separation
law to within one percent. The combination of these adaptive criteria captures
sharp wave-fronts in the bulk and strong gradients in the crack-tip fields.

Adaptive Enforcement of the Traction–Separation Relation

Cohesive models can produce numerical instability when too few elements are
included in the active cohesive process zone [20]. Beyond stability problems,
under-resolved finite element grids can generate significant errors in the work
of separation and the history of crack-tip motion. Adaptive control of the nu-
merical dissipation does not directly address these problems, so we introduce
a second adaptive error indicator to limit the mismatch between the trac-
tions generated by the finite element stress solution and the target cohesive
tractions.

The cohesive traction error on ΓC is given by s̃− s, where s is the vector
traction coefficient of σ|ΓC . We define the cohesive traction error indicator
on element Q as

τQ :=
‖|s̃− s|‖L2(∂Q∩ΓC)

‖s̄‖L2(∂Q∩ΓC)

(24)
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Fig. 4. Model for middle-crack tension specimen.

in which s̄ is the cohesive strength parameter in the Xu and Needleman model.
Let τ∗ be the target value of the cohesive traction error indicator. The cohesive
traction error on element Q is acceptable when τ ≤ τQ ≤ τ , where τ =
(1− η)τ∗ and τ = (1 + η)τ∗ in which 0 < η < 1. Refinement is required when
τQ > τ , and element Q might be coarsenable (depending on whether it is also
coarsenable with respect to the dissipation error) when τQ < τ .

Numerical Example: Cohesive Fracture Under Shock Loading
Conditions

We consider cohesive crack growth in a middle-crack tension specimen loaded
by a uniform, prescribed velocity along two opposite edges. We use symmetry
conditions to model a single quadrant with dimensions, L = 10 mm by W =
3 mm, and an initial crack length, a0 = 4.25 mm, as shown in Figure 4. The
bulk material properties and the parameters for the traction–separation law
are identical to those used in [49]. A uniform, prescribed velocity, applied
along the top edge of the specimen, ramps from zero to a sustained velocity
of 15 m/s over an interval of 0.1 µs. This approximates an elastodynamic
shock that reaches the crack tip at t = 1.44 µs. We use tetrahedral spacetime
elements with complete cubic polynomial bases.

The adaptive SDG model’s ability to resolve shocks accurately and to
maintain the fidelity of the numerical approximation of the TSL is key to
the integrity of this study. Figure 5a shows the spatial discretization that
initiates the adaptive solution process. Both adaptive error indicators are
active; the target per-element energy dissipation is ϕ∗ = 5 × 10−17 J, and
the target normalized cohesive traction error is τ∗ = 1%. Figure 5b shows
the pattern of adaptive mesh refinement at roughly t = 3.5 µs, well after
the initial, stationary tip scatters the main shock wave and the crack begins
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Fig. 5. Progression of mesh refinement during solution.

Fig. 6. Detail of spacetime mesh in vicinity of crack-growth-initiation event

to propagate. The pattern of mesh refinement reflects the pattern of shock
fronts in the bulk material. The apparent distortion of the wavefronts is due
to the fact that the spacetime mesh does not advance uniformly in time; it is
not due to solution error. There is a region of refinement along the cohesive
interface near the initial tip position where the adaptive solution tracks the
moving cohesive process zone. There are strong gradients in the stress field
surrounding the crack tip, but the TSL ensures that the cohesive tractions
remain bounded.
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Figure 6 shows a detail of the portion of the spacetime mesh (the ver-
tical axis represents time) that captures the transtion from a stationary to a
running crack. The diagonal bands visible on the front face of the mesh are
associated with, from left to right, the dilatational and shear waves scattered
by the stationary tip followed by a series of waves emitted by the moving
cohesive process zone as it accelerates to the right.

Figure 7 presents three still images from an animation of the SDG solu-
tion generated by the per-pixel-accurate spacetime rendering procedure de-
scribed in [52]; the sequence depicts the transition from a stationary crack to
a propagating cohesive failure. The color field (rendered in gray scale here)
represents the log of the strain-energy density; the height field depicts the
modulus of the material velocity.

Figure 7a shows wave scattering shortly after the shock reaches the crack
plane; a sharp gradient in the energy density is evident at the crack tip. The
cohesive process zone is stationary, and the response is similar to that of a
stationary, mathematically sharp crack. However, as expected, the cohesive
model eliminates the singular stress field at the tip. Figure 7b shows the
transition to crack propagation. A spike begins to develop in the velocity field
near the initial crack-tip position. Post-simulation analysis shows that the
velocity field eventually develops the same r−

1
2 singular structure predicted

by linear elastodynamic solutions for running cracks [19], where r is the radial
distance to the core of the singularity. The singularity grows in strength and
moves with the accelerating crack tip, as shown in Figure 7c. The emergence
of the velocity singularity was unexpected, and to our knowledge, has not been
predicted by other numerical models for this problem. Our solutions show that
the velocity singularity persists through two decades of the radius r. However,
in view of the discrete nature of our solutions, it is not clear whether the
singular structure persists to arbitrarily small radii. A future publication will
present a more detailed investigation of the velocity singularity for running
cracks.

There are also qualitative differences in the crack-growth kinetics predicted
by the SDG solution and the Xu and Needleman model. Initiation at 1.6 µs
is nearly instantaneous upon the arrival of the primary shock front in [49],
and the crack-tip undergoes rapid acceleration to approach the Rayleigh wave
speed. The SDG solution, on the other hand, shows a lag of roughly 1 µs
between the arrival of the primary shock front and crack-growth initiation,
and the subsequent crack-tip acceleration is more gradual. The slower response
in the SDG model might be explained by the finite time required to transition
from the non-singular velocity field surrounding the stationary crack to the
singular form generated by the running crack.

5.3 Front Tracking and Combined Tracking/Capturing Methods

This section presents an example in which we combine two distinct methods
for resolving discontinuities. After introducing an expanded set of adaptive
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Fig. 7. Visualization of crack propagation over time.

meshing operations, we describe a shock-capturing technique for nonlinear
conservation laws as well as an interface tracking method that delivers sharp
resolution of a moving contact discontinuity by aligning the spacetime mesh
with the trajectory of the singular surface.
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Fig. 8. Edge-flip operation implemented in spacetime (top) vs. instantaneously
(bottom)

New Adaptive Meshing Operations

The adaptive meshing procedures used in the preceding examples, although
effective, relied on a limited number of meshing operations. We performed
mesh refinement instantaneously by subdividing triangles in the space-like
mesh front according to a newest vertex scheme. Mesh coarsening required
a preliminary step wherein a patch of triangles to be coarsened must first
be pitched to a coplanar spacetime configuration prior to each vertex dele-
tion. No provision was made for the spacetime analogues of edge-flips and
vertex smoothing — operations that maintain and improve mesh quality in
conventional adaptive algorithms. An expanded, more robust set of spacetime
adaptive meshing procedures in the current implementation of Tent Pitcher
improves solution accuracy and provides new capabilities for tracking discon-
tinuous and non-smooth solution features.

In the previous implementation, the “tent poles” generated by advancing
a vertex in time were constrained to strictly vertical orientations (parallel to
the time coordinate axis). The current implementation accommodates inclined
tent poles, such that the spatial position of a vertex can vary continuously as
it advances in time, while ensuring that all patches satisfy the causality and
progress contraints required by our O(N) solution scheme. We use this new
capability to carry out smoothing operations on the spatial projection of the
mesh front to improve and maintain element quality. That is, we compute a
smoothed spatial position for each unconstrained vertex in the space mesh
as an area-weighted average of the centroids of the surrounding triangles.
An inclined tent pole then moves the vertex from its previous position to the
smoothed location. Smoothing is applied every time an unconstrained vertex is
pitched, so good mesh quality is maintained throughout the spacetime mesh-
ing process. Inclined tent poles are also important in the interface-tracking
method described below.
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All adaptive operations other than mesh refinement,6 including edge flips,
smoothing and vertex deletions, are now implemented over spacetime patches
in a manner that eliminates projection errors associated with remeshing. For
example, we use the spacetime edge-flip operation, depicted in Fig. 8, to main-
tain the Delaunay property in the spatial projection of the mesh front. In
the spacetime version, the dark gray inflow triangles, PQR and PRS, of the
spacetime tetrahedron PQRS coincide with outflow faces of previously solved
elements, so no projection error is incurred. Thus, the edge flip from PR to
QS, can be executed with zero projection error. If this operation is carried out
instantaneously, as in conventional remeshing procedures, there is unavoidable
projection error incurred by switching from piecewise polynomials defined over
triangles pqr and prs to polynomials defined on triangles qsp and qrs. Overall,
the new set of spacetime meshing operations increases solution accuracy while
reducing the number of elements in an adapted spacetime mesh.

Tracking Moving Interfaces

Discontinuous Galerkin methods in which the mesh explicitly tracks evolving
discontinuities present an attractive alternative, where feasible, to discontinuity-
capturing methods. If element boundaries are aligned with the trajectories of
singular surfaces, then the SDG basis functions can model discontinuous solu-
tions directly, including explicit treatment of the relevant jump conditions,
without the expensive mesh refinement required in capturing methods. Fur-
ther, the need for extra stabilization in the vicinity of a discontinuity can
be reduced or eliminated. The expanded set of spacetime meshing operations
provides a framework for a new approach to interface tracking. We use in-
clined tent poles to generate patches with internal element boundaries that
track the singular surface. For example, we can use a zero-mass-flux condition
to determine the proper tent-pole inclination to track a material interface in a
heterogeneous flow, or we can use a constutive kinetics equation to track the
motion of a phase boundary in a solid. Adaptive smoothing, edge-flip, refine-
ment and vertex-deletion operations maintain the integrity and resolution of
the mesh surrounding the moving interface. All these operations are local and
are carried out continuously as the simulation proceeds. We thus avoid the
mesh distortion and the projection errors associated with global remeshing
operations in many other interface tracking methods.

Numerical Example: Combined Interface Tracking and Shock
Capturing

Figs. 9 and 10 illustrate a shock-tube simulation based on the inviscid Euler
equations (cf. Subsection 3.2) in which we use a combination of techniques
6 Mesh refinement is still carried out instantaneously on the mesh front. However,

this is not problematic because refinement does not induce any projection error
and does not require a preliminary synchronization step.
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Fig. 9. Shock tube example. Adaptive spacetime mesh tracks trajectory of contact
discontinuity moving to right at half the shock speed

to model the discontinuous solution features. Although the basic SDG for-
mulation features some intrinsic upwinding, the nonlinear structure of this
problem requires some additional stabilization to control overshoot and un-
dershoot. We use uniform artificial viscosity and piecewise linear polynomials
in this preliminary study. Better resolution of the shocks would be possible
using a shock-capturing scheme and higher-order polynomials. However, since
testing the SDG approach to interface tracking is the main objective of this
study, we defer these improvements to future work. We use adaptive space-
time refinement to capture a shock moving from the domain center to the
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Fig. 10. SDG solution for shock tube example; height and color fields (rendered
in gray scale here) indicate density and pressure. Interface tracking delivers sharp
resolution of contact discontinuity.

right and an expansion wave opening to the left. Regions of higher density in
the spacetime meshes shown in Fig. 9 identify each feature.

Three residual-based error indicators (one for each conservation equation)
in each spacetime element Q drive this adaptive simulation. The error indic-
ators share a common form, given by

ei =
‖dFi‖L1(Q) + ‖Fi − F∗

i ‖L1(∂Q)

‖ρ0
i ‖L1(Ω0)

; i = 1, 2, 3 (25)

where Ω0 is the spatial analysis domain at the initial time and

F1 := Fρ ρ0
1 = ρ0 (26a)

F2 := Fp ρ0
2 =

√
ρ0E0 (26b)

F3 := FE ρ0
3 = E0 (26c)

in which ρ0 and E0 are the mass density and total energy density fields on Ω0.
Adaptive refinement is triggered when any of the three error indicators exceeds
its maximum allowable value in any element in a patch; adaptive coarsening
is triggered when all three error indicators fall below a minimum threshold in
all the elements in a patch. As seen in Fig. 9, this approach effectively limits
spacetime mesh refinement to the trajectories of the shock and the expansion
wave. However, as with any capturing method and especially due to the crude
form of the stabilization used here, the shock appears smeared out in Fig. 10.
Nonetheless, the conservation properties of the SDG model ensures that the
shock moves at the correct velocity.

We use a different approach, interface tracking, to resolve the contact dis-
continuity in the density field. This feature appears as a coherent surface
in the spacetime mesh midway between the center of the domain and the
right-traveling shock; it is identified by a set of spacetime element faces that
precisely cover the trajectory of the contact discontinuity, rather than by mesh
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refinement. We used the new capability to mesh with inclined tent poles to
align the spacetime mesh with the motion of the discontinuity. Since the sin-
gular surface aligns with element boundaries in the spacetime mesh, the SDG
formulation weakly enforces the correct set of jump conditions at the contact
discontinuity. Notably, the contact discontinuity is captured as a true jump
in the SDG solution (Fig. 10) — without mesh refinement and with no ex-
tra stabilization active beyond the inherent stability of the SDG formulation.
Thus, we obtain a more accurate resolution of the contact discontinuity at
substantially lower cost than would be required if a capturing technique were
applied to this feature.

We used a priori knowledge of the motion of the contact discontinuity to
construct the spacetime mesh in this proof-of-concept study. However, the mo-
tion of discontinuities is often solution-dependent, so a more robust approach
is generally required. We are currently testing a more robust approach, in
which the inclination of the tent pole in each patch is iteratively adjusted to
satisfy the zero-mass-flux condition that governs the motion of the contact
discontinuity. We plan to use this method and related techniques in continu-
ing work to track moving interfaces in materials microstructures and to follow
crack growth along solution-dependent paths.

6 Conclusions

We have demonstrated three distinct approaches to discretizing evolving dis-
continuous solution features using SDG solution methods. The first option,
h-adaptive procedures for capturing discontinuities, mitigates the cost of the
necessary grid refinement by adapting the mesh simultaneously in space and
time, thereby avoiding the expense imposed by a global uniform time step
dictated by the smallest elements in a spatially adapted discretization. The
second approach, the incorporation of a cohesive damage model in the SDG
framework, is facilitated by the discontinuous SDG solution spaces and the
treatment of jump conditions that naturally accommodate the enforcement
of the traction–separation law. We included an adaptive error indicator that
directly ensures the accuracy of the finite element approximation of the TSL.
The high resolution obtained with this model led to the discovery that the
material velocity exhibits a strong singular response for running cracks with
the same r−

1
2 structure observed in classical elastodynamic fracture. We also

presented a preliminary study of how the use of inclined tent poles and a
more robust set of adaptive meshing procedures can be used to track moving
discontinuities. This approach uses the discontinuous nature of SDG solution
spaces to eliminate the need for strong mesh refinement near the discontinu-
ity, to enforce the correct jump conditions dictated by the governing balance
laws, and to render a sharp resolution of the discontinuity. It’s worth noting
that our software framework allows us to combine more than one of these
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techniques to address different classes of evolving discontinuities in a single
computation.

Execution times for the numerical examples reported here ranged from
several hours to several days of serial processing on desk-top processors; the
longest were for the highly refined multi-scale model that resolves the singular
velocity field at a moving cohesive crack tip. These relatively long execution
times are for a non-optimized C++ research code and are not representative
of the true cost of the SDG method. Recent improvements to our serial code
yielded substantial speed-ups in the range of 30 − 40 times faster. The op-
timizations included use of the Blitz++ library [47] to mitigate some of the
inefficiencies of array storage in C++, more effective use of standard math
libraries, use of more aggressive compiler optimizations, and straightforward
eliminations of redundant calculations. Additional serial speed-ups are expec-
ted as we continue to optimize the code. Parallel implementation is another
promising direction to improve performance. We obtain high efficiency and
nearly linear speed-ups in the number of parallel processors for non-adaptive
computations. The main challenge for an effective adaptive parallel imple-
mentation is maintaining load balance in the face of intense and evolving
adaptive refinement. We believe that the local nature of our patch-by-patch
solution scheme will prove useful in on-going research that addresses load
balancing in parallel–adaptive SDG computations.

We continue to develop the underlying SDG formulation and to extend the
technologies for discontinuity capturing reported in this work. One area of con-
tinuing effort involves improved methods for SDG shock capturing to control
overshoot in nonlinear conservation laws. We seek methods that are suitable
for spacetime implementation, that do not interfere with the element-wise
conservation property, that preserve the compact form of the SDG stencil,
and that introduce as little artificial viscosity as possible. SDG variants of
sub-cell shock capturing strategies [39] appear particularly promising at this
time. We continue to develop the SDG technology for tracking moving inter-
faces and discontinuities. One such improvement involves the use of interface
kinetics models to track solution-dependent motions of interfaces and discon-
tinuities. Another application is the use of the interface tracking technology
to track cohesive crack growth along arbitrary, solution-dependent paths (vs.
the predetermined paths in our current studies). Extending our h-adaptive
technology to hp enrichments is another promising direction for development.
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46. Üngör A, Sheffer A (2002) Int J Foundations Comp Sci 13: 201–221
47. Veldhuizen TL (1998) Arrays in Blitz++. In: Caromel D, Oldehoeft RR,

Tholburn M (eds) Proc 2nd Int Symp on Scientific Computing in Object-
Oriented Parallel Environments (ISCOPE’98), Lecture Notes in Computer Sci-
ence 1505, Springer-Verlag, London UK

48. Wells GN, Sluys LJ (2001) Int J Num Methods Engrg 50:2667–2682
49. Xu X-P, Needleman A (1994) J Mechs Phys Solids 42:1397–1434
50. Yin L, Acharya A, Sobh N, Haber RB, and Tortorelli DA (2000) A spacetime

discontinuous Galerkin method for elastodynamics analysis. In: Cockburn B,
Karniadakis G, Shu CW (eds.) Discontinuous Galerkin methods: Theory, com-
putation and applications, Lecture Notes in Computational Science and Engin-
eering 11, Springer-Verlag, Berlin

51. Zhou F, Molinari J-F, Shioya T (2005) Engrg Fracture Mechs 72:1383–1410
52. Zhou Y, Garland M, Haber RB (2004) Pixel-exact rendering of spacetime finite

element solutions, In: Proc IEEE Visualization 2004, IEEE 425–432
53. Zi G, Belytschko T (2003) Int J Num Methods Engrg 57:2221–2240.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 2.03333
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 2400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


