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Features of spacetime discontinuous 
Galerkin finite element methods 

Inter-element 
discontinuous basis 
functions

Weak enforcement of 
balance/conservation jump 
conditions in spacetime 
(e.g., Rankine–Hugoniot 
conditions for conservation 
laws) 

Enables exact conservation 
per element and O(N) 
complexity for hyperbolic 
problems



Features of spacetime discontinuous 
Galerkin finite element methods 

Direct discretization of 
spacetime 

Replaces separate 
temporal integration
Unstructured spacetime 
mesh eliminates tangling in 
moving–boundary 
problems
Unambiguous numerical 
framework for initial/
boundary conditions (vs. 
finite volume, finite 
difference)
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Causal Spacetime Mesh and O(N) 
Advancing-Front Solution Strategy 
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Tent Pitcher:
causal spacetime meshing

tim
e

causality constraint

tent–pitching sequence

Given a space mesh, Tent Pitcher 
constructs a spacetime mesh such 
that every facet on sequence of 
advancing fronts is spacelike (patch 
height bounded by causality 
constraint)

Similar to CFL condition, except 
entirely local and not related to 
stability (required for O(N) solution)



Tent Pitcher:
patch–by–patch meshing & solution

Patches (‘tents’) of tetrahedra; solve immediately for 
O(N) method with rich parallel structure

Maintain “space mesh” as advancing, space-like front 
with non-uniform time coordinates
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Force-like fields
(d,d+1-forms with vector coefficients)

• Body force ((d + 1)-form): b = b�

• Spacetime momentum flux (d-form): M = p� ⇥

M |� = linear momentum flux across d�manifold �

– Linear momentum density: p = p⇥dt

– Stress/traction: ⇥ = � ⇤ ⇥dx

– Stokes Theorem:
�

⇥QM =
�
Q dM



Momentum Balance
• Integral form of linear momentum balance:

�

�Q
M =

�

Q
�b ⇧Q ⇤ D

�

Q
(dM � �b) = 0 ⇧Q ⇤ D (Stokes Thm.)

• Local form with jump part:

(dM � �b)|D\�J = 0

[[M ]]|D⇥�J = 0⌅ (M� �M)|Q⇥�J = 0
M� = Riemann or prescribed value



Adaptive refinement

Refine space mesh using newest vertex method to maintain 
element quality
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More adaptive meshing
New spacetime adaptive meshing operations:

Edge flip; vertex deletion; inclined tent poles (ALE) 
for smoothing, tracking and repositioning

Spacetime format eliminates projection error



Energy balance and dissipation error 
indicator for adaptive meshing

• On every spacetime element Q, SDG solution satisfies:

⇥Q =
�

Q
u̇ ⌅ �b +

1
2

�

⇥Q
(u̇� ⌅M� + �� ⌅ iM�)

=
1
2

�

⇥Q
{(u̇� � u̇) ⌅ (M� �M) + (�� � �) ⌅ i(M� �M)}

Right hand side is non-negative numerical dissipation for Q.

• To control adaptively the numerical dissipation, we use the element-
wise error indicator:

⇥Q ⇤ tol�



Cohesive error measure and 
adaptive error indicator

• Cohesive energy error on cohesive surface trajectory, �C:

�C = ⇧(t� tcoh) · v⇧L1(�C)

• Cohesive error indicator for element Q:

�Q
C = ⇧(t� tcoh) · v⇧L1(�Qcoh) ⌅ tolc



Crack-tip Wave Scattering



Crack-tip Wave Scattering
click to play movie

http://www.youtube.com/watch?v=hqvGWd0S_rw
http://www.youtube.com/watch?v=hqvGWd0S_rw


Crack-tip Wave Scattering
click to play movie

http://www.youtube.com/watch?v=6kh4fp5fJt0
http://www.youtube.com/watch?v=6kh4fp5fJt0


Crack-tip Wave Scattering



Delay Damage Evolution 
Cohesive Model

D = Area fraction of debonded surface

Fineberg & Marder, 1999



Mesoscopic interface 
subdivisions
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Figure 4.1: Mesoscale region hierarchy for the combined damage–contact
model in the neighborhood N(x) of a point x ⌅ �̃ .

4.2.1 Mesoscopic model, area fractions and Riemann

solutions

Figure (4.1) depicts the area subdivisions on a cohesive interface. At the

macroscopic level, the value of D indicates whether the interface is undam-

aged (D = 0) or damaged (0 < D ⇥ 1). In damaged areas, the interface

is partially debonded due to void nucleation and growth or to some other

interface damage mechanism. The mesoscopic neighborhood N(x) of a point

x in a damaged region can be subdivided into bonded and debonded regions.

These regions exist at the mesoscopic level, and we have ⇤2 ⇤ ⇤1, where ⇤1

and ⇤2 are the macroscopic and mesoscopic length scales, respectively. The

undamaged part of the cohesive set is assumed to be fully bonded.

The parameter D(x) is the area fraction of the debonded part of N(x)

relative to the area of N(x). Hence, the area fraction of the bonded part is

1 �D. Furthermore, the debonded part has two possible states, separation

and contact, that depend on the values of the normal separation and the

traction. The respective area fractions of the contact and separation regions,

relative to the total area of the debonded part of N(x), are ⇥ and 1 � ⇥.

Finally, we partition the contact part ofN(x) into contact–stick and contact–

slip parts according to a suitable friction model, such as the Coulomb friction
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Contact conditions

• Common numerical idealizations of contact

✦ Discrete models - goal is to prevent node penetration

✦ Elastostatic contact conditions

✦ Penalty methods and other inexact formulations

-                                                 but 

- Approach exact solution for large K     divergence

✦ Variational Inequality/Lagrange multiplier methods

- Lagrange variables increase the problem size

- typically require an implicit solution scheme

s = f(�u) = K�u(�u < 0) �u = 0!

�



Riemann Contact/Separation
Solutions

• Direct solution from momentum balance and compatibility 
jump conditions

• Matching conditions at material interface

• Preserves characteristic structure of solution

• Weak enforcement of the continuum, dynamic jump 
conditions converges to correct result
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Figure 3.4: Riemann problem with distinct initial data on opposing sides,
⇥ and ⇤, of a material interface � . Local coordinate directions x�,⇥

j corre-
spond the the local frames used in the one-sided Riemann problems. The
xj-directions indicate the local frame on � , which agrees (arbitrarily) with
the local ⇥ frame in this illustration.

horizontal or vertical, we have

šj + ⌃c(j)v̌j = s̆j + ⌃c(j)v̆j = w(j). (3.16)

This equation determines the admissible set of fluxes on the vertical manifolds

as a function of the initial data.

Two-sided Riemann problem

Figure 3.4 shows a general Riemann problem for a two-sided material inter-

face � . Sides ⇥ and ⇤ have distinct initial data, M̌�,⇥ and ⇥̌�,⇥, and material

properties, ⌃�,⇥, ⌅�,⇥ and µ�,⇥; cf. (3.9). Equation (3.16) provides a general

solution for M̆�,⇥ and ⇥̆�,⇥ on � . Since � is vertical, these simplify to

M̆�,⇥ = �̆�,⇥ ⇥̆�,⇥ = v̆�,⇥. (3.17)

The material boundaries on the opposing sides of � possess opposite

orientations, as is evident in the local coordinate frames depicted in figure

(3.4). Either of these orientations can be assigned to � without a�ecting the

expressions in the following development, in which all vector and tensorial

components are assumed to be defined with respect to the local xj coordinate

frame on � . Thus, depending on the relation between x�,⇥
j and xj, it is

necessary to adjust the sign of some components defined with respect to the

local coordinate frames used in the one-sided Riemann problems to obtain
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Interface Matching condition
Bonded and contact-stick

• Direct solution of the Riemann problem from momentum balance and compatibility
condition jump parts

• Unified expressions for normal and tangential directions

• Matching conditions at material interface � di�erent contact/separation solutions

• The characteristic values w(j) := sj + c(j)pj are preserved

• Matching conditions

– Momentum: �s̆⇥ = 0

– Compatibility: �v̆⇥ = 0

• Riemann Solution

– sj
I
= �w(j)/⇥c(j)⇥/�(⇥c(j))�1⇥

– vIj = �w(j)⇥/�(⇥c(j))�1⇥

• Contact-stick and bonded solutions are identical

• Contact-stick and separation solutions are physically distinct:

– Contact-stick

�u = 0

s =?

– Separation

�u =?

s = 0 or s = f(�u)(TSL)

10



Interface Matching condition
Contact-slip

• Matching conditions

– Momentum: �s̆⇥ = 0

– Compatibility: �v̆1⇥ = 0

– Coulomb’s law: sj
II
= k⌃�s1I⌥+(ev̆)j j ⇧= 1

• Riemann Solution

sj
II
=

⇤
s1I j = 1

k⌃�s1I⌥+(e�I )j j ⇧= 1

vIIj =

⇤
vI1 j = 1,

w(j)/�c(j) � sj
II
/�c(j) = v̌j +

�
šj � sj

II
⇥
/�c(j) j ⇧= 1

• Slip velocity �v̆⇥ ⇤ 0 at stick-slip transition ⌅ Discontinuous response from (ev̆)j

• many regularizations proposed to solve the problem (Karnopp, Mostaghel, Quinn)

• �I > 0 at stick-slip transition ⌅ Continuous response from �I > 0

• Matching conditions

– Momentum and constitutive equation: s̆ = 0

– No compatibility condition

• Riemann Solution

– sIII = 0

– vIIIj = w(j)

�c(j)

11



Interface Matching condition
Separation

• Matching conditions

– Momentum: �s̆⇥ = 0

– Compatibility: �v̆1⇥ = 0

– Coulomb’s law: sj
II
= k⌃�s1I⌥+(ev̆)j j ⇧= 1

• Riemann Solution

sj
II
=

⇤
s1I j = 1

k⌃�s1I⌥+(e�I )j j ⇧= 1

vIIj =

⇤
vI1 j = 1,

w(j)/�c(j) � sj
II
/�c(j) = v̌j +

�
šj � sj

II
⇥
/�c(j) j ⇧= 1

• Slip velocity �v̆⇥ ⇤ 0 at stick-slip transition ⌅ Discontinuous response from (ev̆)j

• many regularizations proposed to solve the problem (Karnopp, Mostaghel, Quinn)

• �I > 0 at stick-slip transition ⌅ Continuous response from �I > 0

• Matching conditions

– Momentum and constitutive equation: s̆ = 0

– No compatibility condition

• Riemann Solution

– sIII = 0

– vIIIj = w(j)

�c(j)

11



Mesoscopic subdivision
Damaged area (D)

• General Properties of Damage parameter 

✦ Nondecreasing (irreversible process)

✦ Stress Induced (Ravi-Chandar, Yang 1997)

✦ Exact Bonded solution is recovered for D = 0

✦ Stress free (crack) surface condition at D = 1

• Rate Dependent damage model

✦ Hardening effects at high strain rates (experimental results 
from Fineberg and Marder 1999)

✦ Introduces a fracture related length scale

✦ Mesh dependency of static damage models (strain softening 
failure, Bazant and Belytschko 1984)



Damage Evolution

Follow delay damage evolution model of Allix, Feissel and Thévenet:

⇥̃ =
⇥

⇥2
N + (�⇥T)2

⇥c
normalized e�ective stress

D̄ = f(⇥̃) static damage value

Ḋ =

�
1
� [1�H(⇤f(⇥̃)�D⌅+)] if D < 1
0 if D = 1

damage evolution law

where ⇤ is a characteristic time scale for debonding, and H(0) = 1 and
limx⇥⇤H(x) = 0. We use

H(x) = e�ax

This model implies
D = D̄ ⇥ Ḋ = 0



Mesoscopic subdivision
Contact area (  )

• Contact/Separation transition may introduce shocks in tractions and velocities

• Regularization is required for shock capturing schemes

• Regularization is based on normal contact traction and macroscopic traction

• A minimum separation value of     is ensured in the regularized model

• Surface toughness may provide physical regularization

• No regularization is required for
stick-slip areas
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(a) Contact scheme prior to regulariza-
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(b) Regularized contact scheme.

Figure 3.8: Identification and regularization of the contact and separation
modes.

tinuities in the mechanics solution fields in the form of weak shocks. For

example, the velocity of a traction-free boundary in separation mode closing

at velocity v0 > 0 toward an opposing surface jumps from v0 to 0 at the

instant of contact. This extreme behavior causes a loss of convergence in

many solution algorithms. We introduce the regularization scheme depicted

in Figure 3.8(b), which is designed to smooth the abrupt transition between

separation and contact modes, to remedy this problem. We regularize the

contact area fraction � along both the normal contact–Riemann traction and

the normal separation directions by writing,

� = ���s, (3.36)

in which the factors �� and �s regularize the sharp transitions from positive to

zero separation and from traction-free to compressive tractions, as explained

below.

Let rc � 0 and rs be the limiting separation values corresponding to full
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Crack closure example: brittle fracture 
under cyclic, dynamic loading conditions
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Crack closure example: brittle fracture 
under cyclic, dynamic loading conditions

click to play movie

http://www.youtube.com/watch?v=mw9HR2YIGpI
http://www.youtube.com/watch?v=mw9HR2YIGpI


Solution-dependent crack paths
• Inclined tent poles, edge bisection and smoothing 

extend cohesive zone in any desired direction

• Effective stress criterion for extending cohesive surface

✦ maximum value determines direction for extension

•  Nucleation + coalescence = branching

✦ Probabilistic nucleation criterion models random defects

✦ Introducing cohesive surface does not affect behavior 
until damage accumulates



Solution-dependent crack propagation
Geometry and Loading

42

Solution-dependent crack propagation:

Geometry and loading



Refinement Details: 1 x zoom



Refinement Details: 25 x zoom



Refinement Details: 100 x zoom



Refinement Details: 200 x zoom



Refinement Details: 2000 x zoom



Same problem with crack closure contact 
model, random defects and nucleation

click to play movie

http://www.youtube.com/watch?v=X5_fRZlBhSw
http://www.youtube.com/watch?v=X5_fRZlBhSw


Effect of contact conditions on crack path



Surface roughening at high crack 
velocities 

• Almost uniform hoop stress distribution at 
(Yoffe, 1951)

• Experimentally observed roughness on crack surface (Smekal, 
1953; Kerkhof, 1973; Sharon and Fineberg, 1996)

• Surface roughening and branching instabilities in dynamic 
fracture; Phenomenological wavy crack path (Gao, 1992)

• Dynamical stability of a propagating crack: Obrezanova (2002) at
                    crack may admit one or more oscillatory modes of 
instability

• Stability of dynamically propagating cracks in brittle materials: 
Uenishi et. al. (2001): Surface roughness induced by increase of 
crack velocity

ȧ > 2/3cR

ȧ > 1/3cR



Single crack velocity agreement 
with experiments

• Material degradation and energy loss due to induced heat should 
be contributed in the model (Sharon and Fineberg 1996)

• Bulk material dissipative and damage models to be incorporated

• Material degradation around the crack tip, the high inertia zone, 
and subsequent drop in wave speed (Ravi et. al., 2007)

• Surface tension or hardness in computing the limiting velocity, 
Kerkhof (1997)

47

Single crack velocity 

agreement with experiments



Summary
• Robust adaptive model for crack growth

✦ Ensures accurate rendering of cohesive models

✦ Eliminates all mesh-dependence effects

✦ Supports nucleation

✦ Captures multi-scale behavior

✦ Captures the details of crack propagation (Branching, micro 
branching, surface roughening)

• New dynamic, continuum contact formulation

• Open physical modeling issues

✦ Crack acceleration too rapid (typical of cohesive models) 

✦ Branching pattern does not completely match experiment

✦ Some aspects heuristic, but have framework for developing 


