Riemann Conditions for Elastodynamic Contact and Rate-Dependent Interfacial-Damage Fracture Model

Reza Abedi, R.B. Haber
University of Illinois at Urbana–Champaign

11th U.S. National Congress on Computational Mechanics
University of Minnesota
July 25-28, 2011

Center for Process Simulation & Design
NSF ITR/AP DMR 01-21695
DOE

Center for Simulation of Advanced Rockets
Riemann Solution

Bulk material model

- Direct solution of the Riemann problem from momentum balance and compatibility condition jump parts

- Unified expressions for normal and tangential directions

- Matching conditions at material interface ⇒ different contact/separation solutions

- The characteristic values $w^{(j)} := s^j + e^{(j)} p^j$ are preserved

\[\sigma = \begin{cases} -2\sigma_0 & \text{in } \alpha \\ \sigma = 0 & \text{in } \beta \end{cases} \]

\[w = 2\sigma_0 \]
Interface Matching condition:
Bonded and contact-stick

- **Matching conditions**
 - Momentum: $\llbracket \dot{s} \rrbracket = 0$
 - Compatibility: $\llbracket \tilde{\nu} \rrbracket = 0$

- **Riemann Solution**
 - $s^I_j = \left[\frac{w^{(j)}/\rho c^{(j)}}{\left[(\rho c^{(j)})^{-1} \right]} \right]$
 - $v^I_j = \left[\frac{w^{(j)}}{\left[(\rho c^{(j)})^{-1} \right]} \right]$

- Contact-stick and bonded solutions are identical

- Contact-stick and separation solutions are physically distinct:
 - Contact-stick
 - $\Delta u = 0$
 - $s = ?$
 - Separation
 - $\Delta u = ?$
 - $s = 0 \text{ or } s = f(\Delta u)(TSL)$
Interface Matching condition: Contact-slip

- Matching conditions
 - Momentum: $[\vec{s}] = 0$
 - Compatibility: $[[\vec{u}_1]] = 0$
 - Coulomb’s law: $g^{j\, II} = k\langle -s^{1\, I}\rangle_+ (e_\varphi)^j \ j \neq 1$

- Riemann Solution

$$g^{j\, II} = \begin{cases}
 s^{1\, I} & j = 1 \\
 k\langle -s^{1\, I}\rangle_+ (e_\tau)^j & j \neq 1
\end{cases}$$

$$v_j^{\, II} = \begin{cases}
 v_1^{\, I} & j = 1, \\
 \frac{w^{(j)}}{\rho_c^{(j)}} - s^{j\, II}/\rho_c^{(j)} = \tilde{v}_j + \left(\tilde{s}_j - s^{j\, II}\right)/\rho_c^{(j)} & j \neq 1
\end{cases}$$

- Slip velocity $[[\vec{v}]] \to 0$ at stick-slip transition ⇒ Discontinuous response from $(e_\varphi)^j$
- many regularizations proposed to solve the problem (Karnopp, Mostaghel, Quinn)
- $\tau^I > 0$ at stick-slip transition ⇒ Continuous response from $\tau^I > 0$
Interface Matching condition: Separation

- **Matching conditions**

 - Momentum and constitutive equation: $\ddot{s} = 0$

 - No compatibility condition

- **Riemann Solution**

 - $s^{III} = 0$

 - $v_j^{III} = \frac{w(j)}{\rho_e(j)}$
Contact modes numerical regularization

- Separation to Contact transition may introduce shocks in tractions and velocities:
 \[w^\alpha = -c \rho \ddot{u} \quad w^\beta = -c \rho \ddot{u} \]

 ![Diagram showing separation and contact conditions](image)

 - Separation: \(s^{\alpha,\beta} = 0 \), \(\nu^{\alpha,\beta} = -c \rho \ddot{u} \)
 - Contact: \(s^{\alpha,\beta} = -c \rho \ddot{u} \), \(\nu^{\alpha,\beta} = 0 \)

- Regularization is based on separation mode induced displacement jump (\(\delta_s : \dot{\delta}_s = 2\ddot{u} \))

- A minimum separation value of \(\bar{r}_c \) is ensured in the regularized model

- Continuous stick to slip transitions \(\Rightarrow \) no stick-slip regularization
Numerical verification: Identical bars

- Benchmark problem studied by T.J.R. Hughes et al. (1976); T. A. Laursen, V. Chawla (1997), A. Czekanski, S.A. Meguid (2001); F. Cirak, M. West (2005), ...

\[E_1 = E_2 = 100 \]
Identical bars
Riemann contact values

- Numerical results obtained by incorporating the Riemann target values in the Spacetime Discontinuous Galerkin (SDG) finite element method
Numerical verification: Dissimilar bars

- Same as previous example except $E_1 = 49, E_2 = 100$

(varying numerical dissipation for different time intervals)
Dissimilar bars
Brake simulation
Contact mode transitions

\[E = 10 \text{ GPa} \]
\[\rho = 2000 \text{ kg/m}^3 \]
\[\nu = 0.3 \]
\[L \times H = 100 \text{ mm} \times 20 \text{ mm} \]
\[\bar{\sigma} = 1 \text{ MPa} \]
\[10^{-5} \text{ m/s} \leq \bar{v} \leq 2 \times 10^{-3} \text{ m/s} \]

- Variation of \(\bar{v} \) produces different modes of contact instabilities (Baillet et al., 2005; Adams, 1995; Oueslati et al., 2003; Linck, 2005; Massi et al., 2007)

- \(T \approx 2H/c_1 \approx 15.4 \mu s \)
Brake simulation
low amplitude load
Brake simulation
low amplitude load

stick-slip transitions

Point A
low amplitude load simulation

click to play movie
Brake simulation
medium amplitude load

Stress (MPa)

Time (s) $\times 10^{-3}$

S_{nn} S_{nt}

Velocity (mm/s)

Time (s) $\times 10^{-3}$

v_n v_t
Brake simulation
medium amplitude load

stick-slip-separation transitions
Brake simulation
high amplitude load

![Graphs showing stress and velocity over time for brake simulation.](image)
Brake simulation
high amplitude load

Contact-stick

Time (s) x 10^{-4}

-- a_{ST}

Separation

Time (s) x 10^{-4}

-- a_{S}

Contact-slip

Time (s) x 10^{-4}

-- a_{SL}

slip-separation transitions
high amplitude load simulation

click to play movie
Interfacial damage models

Conical (parabolic) marking on the crack surface

Ravi-Chandar, Knauss 1984

\[\partial Q^d \]
area fraction = \(D \)

\[\partial Q^b \]
area fraction = \(1 - D \)
Mesoscopic interface subdivisions

Problem set up

- Target Riemann values on individual subdivisions
- Area fractions of subdivisions
Damage Evolution law

\[
\dot{D} = \begin{cases}
\frac{1}{\tau}[1 - H(\langle f(y) - D \rangle_+)] & D < 1 \\
0 & D = 1
\end{cases}
\]

\[H(x) = \exp(-a.x)\]

Properties of the evolution law

- a maximum damage rate, exists.
- Target damage value, \(f(y) \), is a function of stress.
- The rate is a function of the difference between damage and its target value.
Numerical Examples: All modes

\[\tilde{\sigma}(t) \]

- Free surface
- Crack free surface
- Cohesive surface
- Crack tip
- Fixed boundary
- Transmitting boundary
- \(\alpha_0 \)
- \(L \)
Crack closure: cyclic, dynamic loading

click to play movie
Solution-dependent crack path

Propabilistic crack nucleation

- Crack nucleates from defects with random distribution of strength

Crack growth

- Crack propagates along the direction(s) of maximum effective stress
- Element boundaries are aligned with arbitrary propagation directions
- No discontinuous features are introduced within the finite elements
- No additional criteria used for branching

(a) CZT insertion on the opposite edge of (b) The spatial transition of a vertex by a the CZT by a refinement operation. tent pitching operation.
Solution-dependent crack propagation: Geometry and loading

PMMA:

- \(E = 3.24 \text{GPa} \).
- \(\rho = 1190 \frac{Kg}{m^3} \).
- \(w = 0.020 \text{MPa} \).
- \(\tau = 10^{-2} \mu \text{s} \).

based on Sharon and Fineberg experiment (1996)
Solution-dependent crack propagation

click to play movie