Riemann Solutions for Spacetime
Discontinuous Galerkin Methods

Scott T. Miller
Applied Research Laboratory
Engineering Science & Mechanics
The Pennsylvania State University

Reza Abedi
Mechanical, Aerospace, and Biomedical Engineering
University of Tennessee Space Institute
SDG directly discretizes spacetime with causal meshes.

- Developed at the Univ. of Illinois Urbana-Champaign
 - R. Haber, J. Erickson, et al.
- Uses the characteristic structure of hyperbolic PDEs to construct patches of elements that decouple from the domain.
- Given an initial triangulation, a local patch of elements is constructed and solved immediately
- *Linear computational complexity* in the number of patches/elements
SDG tent-pitching/solution procedure enables highly adaptive spacetime meshes.

- Linearized elastodynamics: shock reflection off of a stationary crack

[Click to play movie]
SDG with adaptive meshing sharply resolves waves and discontinuities.

- Discontinuous elements permit sharp discontinuity resolution

[click to play movie]
Differential forms notation provides a clear & concise statement of balance laws.

- No natural metric for spacetime vectors, so tensor calculus is inadequate
 - No inner product, no normal vectors
 - No Stokes' theorem, no weak formulations!
- Forms: normal free, direct expressions of spacetime balance laws
- Basic mathematical constructs and identities:

 Spacetime manifold: \(\mathcal{D} \subset \mathbb{E}^d \times \mathbb{R} \)

 One form: \(\mathbf{dx} := e_i dx^i = e_1 dx^1 + e_2 dx^2 + e_3 dx^3 \)

 \(d\)-form: \(\star \mathbf{dx} := e^i \star dx^i = e^1 dx^2 \wedge dx^3 - e^2 dx^1 \wedge dx^3 + e^3 dx^1 \wedge dx^2 \)

 Stokes’ Theorem: \(\int_Q d\mathbf{\omega} = \int_{\partial Q} \mathbf{\omega} \)

 \(d(w \star \mathbf{dx}) = (\nabla w) \Omega \quad d(a \wedge \star \mathbf{dx}) = (\nabla \cdot a) \Omega \)

 \(d(w \star dt) = \dot{w} \Omega \quad d(a \wedge \star dt) = \dot{a} \Omega \)
Differential forms notation provides a clear & concise statement of balance laws.

- Governing equations on a spacetime control volume Q:
 \[
 \int_{\partial Q} F(u) - \int_Q S(u) = 0
 \]

- Localized governing equations:
 \[
 dF - S = 0, \\
 \]

- Flux derivative has a familiar form:
 \[
 F(u) := u \diamond dt + f(u) \diamond dx \\
 dF = (\dot{u} + \nabla \cdot f(u)) \, dx^1 \, dx^2 \, dx^3 \, dt
 \]

- Jump terms arise due to the distributional nature or derivatives:
 \[
 [F] |_{\Gamma_J} := (F^* - F) |_{\Gamma_J} = 0
 \]

- Standard Bubnov-Galerkin weak formulation:
 Find $u \in U$ such that for every $Q \in \mathcal{P}$
 \[
 -\int_Q [d\hat{w} \wedge F(u) + \hat{w} \wedge S(u)] + \int_{\partial Q} \hat{w} \wedge F^*(u) = 0 \quad \forall \, \hat{w} \in \mathcal{U}^Q
 \]
The inter-elemental flux \(F^* \) is determined by solving a local, one dimensional Riemann problem.

- **Riemann problem**: Given a hyperbolic PDE and an interface with discontinuous data across it, determine the intermediate solution states (and satisfy Rankine-Hugoniot).
 - Information travels between cells only in the “normal” direction
 - The Riemann problem becomes one directional
 - Necessary to introduce a local coordinate system
 - *Source terms do not influence the spacetime Riemann flux*
The inter-elemental flux F^* is determined by solving a local, one dimensional Riemann problem.

- **Riemann problem**: Given a hyperbolic PDE and an interface with discontinuous data across it, determine the intermediate solution states (and satisfy Rankine-Hugoniot).
- Information travels between cells only in the “normal” direction
- The Riemann problem becomes one directional
- Necessary to introduce a local coordinate system
- **Source terms do not influence the spacetime Riemann flux**

Question: How do we transform our differential forms notation into a local coordinate system so that the Riemann problem is the familiar one (e.g. from CFD)?
Coordinate transformations with forms are analogous to the “typical” transformations.

- Transform global to local coordinates: \(\{x^i, t\}_{i=1}^d \rightarrow \{\tilde{x}^i, \tilde{t}\}_{i=1}^d \)
- The spatial coordinates are rotated, and time is shifted.
- Spacetime fluxes give both spatial and temporal fluxes through an arbitrarily oriented manifold!
- Basis vectors transform via a rotation tensor: \(\mathbf{e}_I := Q_I^i \mathbf{e}_i, \quad \mathbf{e}_t := \mathbf{e}_t. \)

- Vector-valued differential forms are objective: \(\omega = \omega, \quad \star \omega = \star \omega \)
- We are left to properly transform the “fields” that are coefficients of the vector valued forms, e.g. \(u \) in \(u \wedge \star \omega \)
Standard Riemann solvers can be used once the formulation is in the local coordinate system.

One-dimensional Riemann problem for hyperbolic systems

\[u_t + A u_x = 0, \quad u = \{u_1, u_2, \ldots, u_n\}^T, \]
\[u = \begin{cases}
 u_\alpha, & x_1 < 0 \\
 u_\beta, & x_1 > 0,
\end{cases} \]

Remarks:

› \(A \) is the (linearized) flux Jacobian matrix
› Source terms do not affect the Riemann solution in the SDG context
› Eigen-decomposition/diagonalisation:

\[A = \Gamma \Lambda \Gamma^{-1} \]
\[\Gamma = [\gamma_1 | \cdots | \gamma_n] \]
\[\Lambda = \begin{pmatrix}
 c_1 & \cdots & 0 \\
 \vdots & \ddots & \vdots \\
 0 & \cdots & c_n
\end{pmatrix} \]
Riemann solutions in characteristic variables are then ‘textbook’.

Change of variables: \[\boldsymbol{w}_\alpha = \Gamma^{-1}\boldsymbol{u}_\alpha, \quad \boldsymbol{w}_\beta = \Gamma^{-1}\boldsymbol{u}_\beta \]

Riemann solution: \[\boldsymbol{w}^* = \left\{ w_{\beta 1}, \ldots, w_{\beta p}, w_{\alpha p+1}, \ldots, w_{\alpha m} \right\}^T \]

Riemann solution in primitive variables: \[\boldsymbol{u}^* = \Gamma \boldsymbol{w}^* \]

\[u_{i}^* = \left(\sum_{j=1}^{p} \Gamma_{ij}(\Gamma^{-1})_{jk}u_{\beta k} \right) + \left(\sum_{j=p+1}^{m} \Gamma_{ij}(\Gamma^{-1})_{jk}u_{\alpha k} \right) \]

Spatial flux: \[F_{i}^*(\boldsymbol{u}) = A_{ij}u_{j}^* = \left(\sum_{j=1}^{p} \Gamma_{ij} \lambda^j(\Gamma^{-1})_{jk}u_{\beta k} \right) + \left(\sum_{j=p+1}^{m} \Gamma_{ij} \lambda^j(\Gamma^{-1})_{jk}u_{\alpha k} \right) \]

Note: The linearized eigenstructure is often much easier to compute than the entire Riemann solution.
Hyperbolic thermal model (non-Fourier): semi-analytic Riemann solver is not necessary.

Constitutive MCV equation: \[\frac{1}{\kappa} (\tau \dot{q} + q) + \nabla T = 0 \]

Primitive variables: \[\mathbf{u} = \left\{ \begin{array}{c} u_1 \\ u_2 \end{array} \right\} = \left\{ \begin{array}{c} CT \\ (\tau / \kappa) q \end{array} \right\}, \quad \{ u_1, u_2, u_3 \} = \left\{ \begin{array}{c} CT, \frac{\tau}{\kappa} q_n, \frac{\tau}{\kappa} q_t \end{array} \right\} \]

\[\mathbf{F}(\mathbf{u}) = \left\{ \begin{array}{c} F_1 \\ F_2 \end{array} \right\} = \left\{ \begin{array}{c} CT \dot{t} + q \wedge \star \mathbf{d}x \\ (\tau / \kappa) q \wedge \mathbf{d}t + T \wedge \mathbf{d}x \end{array} \right\}, \quad \mathbf{S}(\mathbf{u}) = \left\{ \begin{array}{c} S_1 \\ S_2 \end{array} \right\} = \left\{ \begin{array}{c} 0 \\ (1 / \kappa) q \Omega \end{array} \right\} \]

\[\{ c \}^3_{i=1} = \{-c_T, 0, c_T\}, \quad c_T = \sqrt{\frac{\kappa}{C_T}} \]

\[\gamma_1 = \left\{ -\sqrt{\frac{C \kappa}{\tau}}, 1, 0 \right\}, \quad \gamma_2 = \{0, 0, 1\}, \quad \gamma_3 = \left\{ \sqrt{\frac{C \kappa}{\tau}}, 1, 0 \right\} \]
Hyperbolic thermal model (non-Fourier): semi-analytic Riemann solver is not necessary.

Constitutive MCV equation:
\[
\frac{1}{\kappa} (\tau \dot{q} + q) + \nabla T = 0
\]

Primitive variables:
\[
\mathbf{u} = \begin{cases}
\mathbf{u}_1 \\
\mathbf{u}_2
\end{cases} = \begin{cases}
CT \\
(\tau/\kappa)q
\end{cases}, \quad \{u_1, u_2, u_3\} = \begin{cases}
CT, \frac{\tau}{\kappa} q_n, \frac{\tau}{\kappa} q_t
\end{cases}
\]

\[
\mathbf{F}(\mathbf{u}) = \begin{cases}
\mathbf{F}_1 \\
\mathbf{F}_2
\end{cases} = \begin{cases}
CT \ast dt + q \wedge \ast dx \\
(\tau/\kappa)q \ast dt + T \ast dx
\end{cases}, \quad \mathbf{S}(\mathbf{u}) = \begin{cases}
\mathbf{S}_1 \\
\mathbf{S}_2
\end{cases} = \begin{cases}
0 \\
(1/\kappa)q \Omega
\end{cases}
\]

Exact Riemann solution

\[
\mathbf{u}_1^* = \langle \mathbf{u}_1 \rangle - \frac{1}{2} \sqrt{\frac{C\kappa}{\tau}} [\mathbf{u}_2] \quad \text{if } \Gamma_{\alpha\beta} \text{ is in } R_1 \text{ or } R_2
\]

\[
\mathbf{u}_2^* = \langle \mathbf{u}_2 \rangle - \frac{1}{2} \sqrt{\frac{\tau}{C\kappa}} [\mathbf{u}_1] \quad \text{if } \Gamma_{\alpha\beta} \text{ is in } R_1 \text{ or } R_2
\]

\[
\mathbf{u}_3^* = \begin{cases}
\mathbf{u}_3^\alpha & \text{if } \Gamma_{\alpha\beta} \text{ is in } R_1 \\
\mathbf{u}_3^\beta & \text{if } \Gamma_{\alpha\beta} \text{ is in } R_2
\end{cases}
\]
Hyperbolic heat conduction permits ‘thermal shocks’.

Thermal shock loading of a matrix with circular voids.
Hyperbolic heat conduction permits ‘thermal shocks’.

Thermal shock loading of a matrix with inclusions.
Linearized elastodynamics: weak shocks and solution dependent crack propagation

Enforce linear momentum and kinematic compatibilities

\[
\mathbf{u} = \begin{pmatrix} \mathbf{u} \\ \mathbf{p} \\ \mathbf{E} \end{pmatrix}, \quad \{u_i\}_{i=1}^7 = \{u_n, u_t, \rho v_n, \rho v_t, E_{nn}, E_{nt}, E_{tt}\}
\]

Eigensystem

\[
\{c\}_{i=1}^7 = \{-c_D, -c_S, 0, 0, 0, c_S, c_D\}, \quad c_D = \sqrt{\frac{\lambda + 2\mu}{\rho}}, \quad c_S = \sqrt{\frac{\mu}{\rho}}
\]

\[
\gamma_1 = \{0, 0, \rho c_D, 0, 1, 0, 0\},
\gamma_2 = \{0, 0, 0, 2\rho c_S, 0, 1, 0\},
\gamma_3 = \{1, 0, 0, 0, 0, 0, 0\}
\gamma_4 = \{0, 1, 0, 0, 0, 0, 0\}
\gamma_5 = \{0, 0, 0, 0, -\lambda, 0, \lambda + 2\mu\}
\gamma_6 = \{0, 0, 0, -2\rho c_S, 0, 1, 0\},
\gamma_7 = \{0, 0, -\rho c_D, 0, 1, 0, 0\}
\]
Linearized elastodynamics: Exact Riemann solution

\(u_1^* = \begin{cases} f_1^\alpha & \text{if } \Gamma_{\alpha\beta} \text{ is in } R_1 \text{ or } R_2 \\ f_1^\beta & \text{if } \Gamma_{\alpha\beta} \text{ is in } R_3 \text{ or } R_4 \end{cases} \)

\(u_2^* = \begin{cases} f_2^\alpha & \text{if } \Gamma_{\alpha\beta} \text{ is in } R_1 \text{ or } R_2 \\ f_2^\beta & \text{if } \Gamma_{\alpha\beta} \text{ is in } R_3 \text{ or } R_4 \end{cases} \)

\(u_3^* = \left< f_3 \right> + \frac{\rho c_D}{2} \left([f_5] + \frac{\lambda}{\lambda + 2\mu} [f_7] \right), \text{ for all regions} \)

\(u_4^* = \begin{cases} f_4^\alpha & \text{if } \Gamma_{\alpha\beta} \text{ is in } R_1 \\ \left< f_4 \right> + \rho c_s [f_6] & \text{if } \Gamma_{\alpha\beta} \text{ is in } R_2 \text{ or } R_3 \\ f_4^\beta & \text{if } \Gamma_{\alpha\beta} \text{ is in } R_4 \end{cases} \)

\(u_5^* = \frac{1}{2\rho c_D} [f_3] + \left< f_5 \right> + \frac{\lambda}{2(\lambda + 2\mu)} [f_7], \text{ for all regions} \)

\(u_6^* = \begin{cases} f_6^\alpha & \text{if } \Gamma_{\alpha\beta} \text{ is in } R_1 \\ \frac{1}{4\rho c_s} [f_4] + \left< f_6 \right> & \text{if } \Gamma_{\alpha\beta} \text{ is in } R_2 \text{ or } R_3 \\ f_6^\beta & \text{if } \Gamma_{\alpha\beta} \text{ is in } R_4 \end{cases} \)

\(u_7^* = \begin{cases} f_7^\alpha & \text{if } \Gamma_{\alpha\beta} \text{ is in } R_1 \text{ or } R_2 \\ f_7^\beta & \text{if } \Gamma_{\alpha\beta} \text{ is in } R_3 \text{ or } R_4 \end{cases} \)
Linearized elastodynamics: weak shocks are resolved over multiple scales with spacetime adaptive meshing

click to play movie
Linearized elastodynamics: weak shocks and solution dependent crack propagation

Contact and cohesive zone models are viewed as special Riemann conditions on crack faces.

[Click to play movie]
Linearized elastodynamics: weak shocks and solution dependent crack propagation

Mesh refinement enables prediction of crack paths with high fidelity.
Generalized thermoelasticity: coupled multiphysics benefit from using a semi-analytic exact Riemann solver

- Governing equations combine elastodynamics and thermal model
- Stress is temperature dependent
- Energy balance now has a velocity term
- Primitive variables:
 \[\{u_i\}_{i=1}^{10} = \{u_n, u_t, \rho v_n, \rho v_t, E_{nn}, E_{nt}, E_{tt}, T, q_n, q_t\} \]

- Coupled wavespeeds are complicated:
 \[
c_d = \left[\frac{1}{2} \left(c_D^2 + c_T^2 + \beta - \sqrt{-4c_D^2 c_T^2 + (c_D^2 + c_T^2 + \beta)^2} \right) \right]^{1/2}
 \]
 \[
c_t = \left[\frac{1}{2} \left(c_D^2 + c_T^2 + \beta + \sqrt{-4c_D^2 c_T^2 + (c_D^2 + c_T^2 + \beta)^2} \right) \right]^{1/2}
 \]

- Exact Riemann solutions get ‘nasty’; e.g. the simplest one is
 \[
 (u_8)^* = CT^* = \langle u_8 \rangle - \frac{1}{2\rho(c_d + c_t)} \left(\rho C(c_d c_t + c_T^2) [u_9] + kT_0 [u_3] \right)
 \]
Generalized thermoelasticity: coupled multiphysics benefit from using a semi-analytic exact Riemann solver

- Eigensystem is much easier to obtain and implement
- Symbolic computer algebra can be used
- Only need to replace eigenvalues/vectors for each subproblem

\[
\begin{align*}
\gamma_1 &= \{0, 0, \rho c_D^2 (c_t - c_T)(c_t + c_T), 0, c_t (c_D^2 - c_d^2), 0, 0, -c_D^2 c_t C \theta, c_D^2 \theta, 0\}, \\
\gamma_2 &= \{0, 0, \rho c_D^2 (c_d - c_T)(c_d + c_T), c_d (c_D - c_t)(c_D + c_t), 0, 0, -c_D^2 c_d C \theta, c_D^2 \theta, 0\}, \\
\gamma_3 &= \{0, 0, 0, 2 \rho c_S, 0, 1, 0, 0, 0, 0\}, \\
\gamma_4 &= \{0, 1, 0, 0, 0, 0, 0, 0, 0, 0\}, \\
\gamma_5 &= \{0, 0, 0, 0, 0, 0, 0, 0, 0, 1\}, \\
\gamma_6 &= \{0, 0, 0, 0, -\lambda, 0, \rho c_D^2, 0, 0, 0\}, \\
\gamma_7 &= \{1, 0, 0, 0, 0, 0, 0, 0, 0, 0\}, \\
\gamma_8 &= \{0, 0, 0, -2 \rho c_S, 0, 1, 0, 0, 0, 0\}, \\
\gamma_9 &= \{0, 0, \rho c_D^2 (c_d - c_T)(c_d + c_T), c_d (c_t^2 - c_D^2), 0, 0, C c_d c_D^2 \theta, c_D^2 \theta, 0\}, \\
\gamma_{10} &= \{0, 0, \rho c_D^2 (c_t - c_T)(c_t + c_T), c_t (c_d - c_D)(c_d + c_D), 0, 0, C c_D^2 c_t \theta, c_D^2 \theta, 0\}
\end{align*}
\]
Riemann solutions for unstructured spacetime DG methods are as straightforward as any other method.

- Don’t let the differential forms notation put you off!
- The forms are objective with respect to coordinate systems
- Rotations into local coordinates are familiar
- Source terms in equations *do not matter* with SDG methods!
- Complicated systems of PDEs from multiphysics problems can benefit substantially from a semi-analytic exact Riemann solver
- PDEs do not need to be linear, just linearized at the flux location
- Extensions to exact non-linear Riemann solvers should be straightforward, but with a much higher computational cost