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Abstract

Spacetime discontinuous Galerkin finite element methods (cf. [1, 2, 3]) rely
on ‘target fluxes’ on element boundaries that are computed via local one-
dimensional Riemann solutions in the direction normal to the element face.
In this work, we provide details of converting a space-time flux expressed
in differential forms into a standard one-dimensional Riemann problem on
the element interface. We then demonstrate a generalized solution procedure
for linearized hyperbolic systems based on diagonalisation of the governing
system of partial differential equations. The generalized procedure is partic-
ularly useful for the implementation aspects of coupled multi-physics appli-
cations. We show that source terms do not influence the Riemann solution
in the spacetime setting. We provide details for implementation of coordi-
nate transformations and Riemann solutions. Exact Riemann solutions for
some linearized systems of equations are provided as examples, including an
exact, semi-analytic Riemann solution for generalized thermoelasticity with
one relaxation time.
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1. Introduction

Riemann solvers or approximate Riemann solvers are commonly used in
control volume based numerical methods, e.g. finite volume methods and
discontinuous Galerkin methods [4, 5, 6]. Spacetime discontinuous Galerkin
(SDG) methods, as described in [1, 3, 2, 7, 8, 9, 10, 11, 12, 13, 14], are one
such numerical method where Riemann solutions (or Riemann fluxes) are
needed on inter-elemental boundaries. In this paper, we provide the details
of the Riemann solution process as we have it used in [1, 3, 2, 7, 8, 9]. A key
component of the procedure is transforming the differential forms formula-
tion into a local coordinate system in order to solve the standard Riemann
problem in the normal direction. The Riemann solution procedure itself is
not novel; the basic procedure can be found in articles [15] or textbooks
[16, 4]. The usefulness of our current exposition lies in clarifying the tran-
sition from differential forms in spacetime to a one dimensional Riemann
problem, and calculating the exact Riemann flux. The general procedure
we develop can be applied to systems of hyperbolic equations, and it is not
restricted to SDG methods. In addition, our semi-analytic solution structure
is particularly useful for the derivation and implementation of the Riemann
solutions for complicated multiphysics problems, as shown in Section 4.3 on
generalized thermoelasticity.

We use differential forms and the exterior calculus on manifolds to for-
mulate systems of hyperbolic equations and express fluxes across spacetime
interfaces with arbitrary orientation. This approach yields a very concise
and elegant structure for various identities such as the Stokes theorem. More
importantly, it eliminates problems pertained to orthogonality and the def-
inition of magnitude and normal vectors in classical mechanics due to the
absence of an objective definition for spacetime normal vectors. While many
of the mathematical statements necessary can be made with ‘standard’ tensor
calculus notation, we find that differential forms in spacetime are extremely
useful in identifying the correct spacetime fluxes, restrictions on arbitrarily
oriented boundaries, and dual quantities. Differential forms for finite element
methods are not quite standard, but their usage is increasing due to their
compact notation and elucidation of physical and mathematical properties
(see, e.g., [17, 18, 19, 20].

We follow by discussing the restrictions of differential forms to element
faces and basic coordinate transformations. We then state the Riemann
problem for a general linear hyperbolic system and demonstrate the solution
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construction on arbitrarily oriented boundaries. Source terms in the differ-
ential system are shown to have no effect on the Riemann solution (in the
SDG context). We also provide examples from linearized elastodynamics,
non-Fourier heat conduction, and a form of generalized linear thermoelas-
ticity. We use the non-linear Euler equations (inviscid flow) to demonstrate
how our method can be applied after performing linearization of a the flux
Jacobian.

2. Spacetime discontinuous Galerkin methods

The spacetime discontinuous Galerkin methods developed in [1, 3, 2, 7,
8, 9] are a family of discontinuous finite element methods for hyperbolic
systems of equations. They utilize an advancing front mesh generation pro-
cedure that allows local ‘patches’ of elements to become decoupled from the
global solution domain through causality. Other spacetime methods that use
a more conventional ‘time extrusion’ or ‘timeslab’ approach can be found
in [10, 11, 12, 13, 14]. Our formulations all share a control volume struc-
ture over a spacetime element, where volumetric changes are balanced by
surface fluxes. We utilize the coordinate-free notation of differential forms,
which is atypical in the computational mechanics literature but very useful
on arbitrarily oriented manifolds in spacetime. The forms allow us to clearly
identify and distinguish spatial and temporal fluxes, space-like and time-like
manifolds, as well as circumventing the need to define a “natural” space-
time metric. The use of differential forms within the context of numerical
methods has also been espoused by other authors, see e.g. [19]. Coordi-
nate transformations are necessary on element faces, where we must solve
the one-dimensional Riemann problem in the normal direction. As such,
herein we provide details on the coordinate transformations used in our SDG
implementations.

2.1. Differential forms notation

We use the notation of differential forms on spacetime manifolds to de-
velop our SDG formulations. This approach supports a direct coordinate-free
notation that can be used to express fluxes across spacetime interfaces with
arbitrary orientation, such as element boundaries in unstructured spacetime
meshes. This leads to concise representations of the governing equations that
emphasize the notion of conservation on spacetime control volumes. In con-
trast to tensor notation, for example, the Stokes Theorem expressed in forms
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notation does not require unit vectors ‘normal’ to spacetime d-manifolds.
Such objects are not well defined, given the absence of an inner-product
for spacetime vectors in classical mechanics. In this subsection, we present
definitions and notations for differential forms with tensor coefficients on
spacetime manifolds. See [21, 22, 23, 24] for more complete expositions of
differential forms and the exterior calculus on manifolds. Our formulation is
specialized to flat spacetime manifolds for simplicity.

Consider a flat spacetime manifold D ⊂ M := Ed × R in which d is the
spatial dimension of the manifold. We use the basis {ei, et}di=1, in which the
spatial basis {ei} spans Ed and et is the temporal basis vector, to represent
vectors in the tangent space. The tangent bundle for our flat spacetime
is uniform over M, so we denote the tangent space at all points P ∈ M
simply as T , rather than the usual TP . The dual basis for covectors in
the cotangent bundle T ∗ is denoted as {ei, et}di=1 and is determined by the
relations ei(ej) = δij, e

i(et) = 0, et(ei) = 0 and et(et) = 1. Thus, the
component representation of any vector a ∈ T and any covector b ∈ T ∗ are
a = aiei+a

tet and b = bie
i+bte

t in which, and from here on, summation from
1 to d is implied for indices repeated between subscripts and superscripts,
excepting the reserved index t for which no summation is implied. We use
bold italic type to denote forms and covectors and bold upright type to denote
vectors and tensors.

Let T r := T × . . .× T (r times) be the space of r-vectors. The space of
r-covectors (i.e., alternating, r-linear functions on T r) is denoted by ΛrT ∗.
The standard basis for r-covectors is denoted by

{
eλ
}

, in which λ = i1 . . . ir
is a strictly increasing r-index. Any r-covector ω ∈ ΛrT ∗ has a unique
component representation with respect to the standard basis, ω = ωλe

λ, in
which summation over strictly increasing r-indices is implied.

We use “∧” to denote the usual exterior product operator and d to denote
the exterior derivative.

A differential r-form on D (with scalar coefficients) is an r-covector field
on D; we call these r-forms for short. The standard basis for 1-forms is{

dxi, dt
}d
i=1

, where, for our flat manifold, the dxi are 1-forms with uniform
values ei, and dt is the 1-form with uniform value et. Thus, any one form
with scalar coefficients has the unique component representation with respect
to the standard basis, ω = ωidxi + ωtdt, in which ωi and ωt are scalar fields
on D. Top forms in spacetime are (d+1)-forms, for which the standard basis
is the singleton set {Ω}, where Ω = dx1 ∧ . . . ∧ dxd ∧ dt. Thus, a top-form
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α with scalar coefficients is expressed as α = αΩ in which α is a scalar
function on D.

Let α be an r-form with tensor coefficient a of order s : s ∈ N, with a
suitable inner product defined on the space of tensor coefficients. The Hodge
star operator is defined by

α ∧ ?α = |a|2Ω, (1)

in which ?α is a (d + 1 − r)-form. We shall have use for d-forms, for which
we define a preferred basis {?dxi, ?dt}di=1. This implies dxj ∧ ?dxk = δjkΩ,
dt ∧ ?dxj = 0 and dxj ∧ ?dt = 0 for j, k = 1, . . . , d.

Our formulation makes use of forms with scalar, (co)vector and (co)tensor
coefficients. The usual definition of the exterior product operator addresses
forms with scalar coefficients; here we extend the definition to address forms
with tensor coefficients of arbitrary order. Let α and β be r- and s-forms
on D, respectively, and let a and b be tensor fields on D of order m and n,
respectively, where 0 ≤ n ≤ m. We write aα and bβ to describe an r-form
with tensor coefficients of order m and an s-form with tensor coefficients of
order n. The exterior product of aα and bβ is the (r + s)-form with tensor
coefficients of order m− n given by

aα ∧ bβ := a(b)(α ∧ β). (2)

where a(b) is the tensor field of order m−n obtained from the linear mapping
of tensor field a applied to tensor field b.

We introduce a useful 1-form with vector coefficients and an associated
d-form with (co)vector coefficients to facilitate our formulation:

dx := eidxi (3a)

?dx := ei?dxi. (3b)

Given any differentiable scalar field w on D, we find

d(w?dx) = (∇w)Ω (4a)

d(w?dt) = ẇΩ; (4b)

for any differentiable tensor field a on D of order m ≥ 1, we also have

d(a ∧ ?dx) = (∇ · a)Ω (5a)

d(a ∧ ?dt) = ȧΩ, (5b)
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in which ∇ and ∇· denote the spatial gradient and spatial divergence oper-
ators, defined with time held fixed, and a superposed dot denotes a partial
differential with respect to time.

Consider any open Q ⊂ D with a regular boundary ∂Q. Stokes’ Theorem
in differential forms notation is written as [21]∫

Q

dω =

∫
∂Q

ω (6)

in which ω is a d-form with scalar or vector coefficients.

2.2. General SDG formulations

We write balance laws on a spacetime control volume Q as∫
∂Q

F(u)−
∫
Q

S(u) = 0, (7)

where u is an n-tuple of balanced quantities, F(u) is the corresponding space-
time flux, and S(u) are volumetric source terms. Note that the source term
is a top form on the spacetime volume, and the flux F(u) is an n-tuple of
d-form valued fluxes.

Applying Stokes’ theorem and localizing, the point-valued differential sys-
tem is written as

dF− S = 0, (8)

where the exterior derivative must be in the sense of distributions. The terms
arising due to the distributional nature of the exterior derivative are

[[F]]
∣∣
ΓJ

:= (F∗ − F)
∣∣
ΓJ

= 0, (9)

where ΓJ is the jump set over the physical domain. The target flux F∗ (which
is also often referred to as a numerical flux, especially in the CFD community)
is precisely the quantity that we must determine via Riemann solutions.

In many cases, e.g. conservation laws, we can split the spacetime flux F
into separate temporal and spatial fluxes as

F(u) := u?dt + f(u)?dx, (10)

where f represents the spatial flux. In such cases, (8) is equivalent to

(u̇ +∇ · f(u)− s(u)) dx1dx2dt = 0, (11)
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in the more conventional multi-dimensional calculus notation (in two spatial
dimensions).

Our Bubnov-Galerkin weak formulation is obtained from a weighted resid-
ual statement, wherein (8) and (9) are weighted by the n-tuple of zero-forms
ŵ and integrated over their respective domains. Application of Stokes’ The-
orem yields the following weak problem over the physical domain P :

Problem 1 (General SDG weak problem). Find
u ∈ U such that for every Q ∈ P

−
∫
Q

[dŵ ∧ F(u) + ŵ ∧ S(u)] +

∫
∂Q

ŵ ∧ F∗(u) = 0 ∀ ŵ ∈ UQ, (12)

where U ,UQ are appropriate function spaces for the problem of interest.

2.3. Local coordinates and transformations

The flux through an arbitrary co-dimension 1 manifold in spacetime is
substantially simplified once a local coordinate system is employed. In this
section, we first investigate the transformation relations between two arbi-
trary coordinate systems. Next, we present the restriction of differential
forms on a manifold employing a corresponding local coordinate system.

2.3.1. Coordinate transformation

We presented our differential form expressions using the coordinate sys-
tem {ei, et}di=1. We choose a second coordinate system {ei, et}di=1, related to
the former through,

e := Qe, that is, eI := QI
iei, (13a)

et := et. (13b)

where Q is an orthogonal matrix. According to the properties of the dual
basis, cf. section 2.1, and orthogonallity of Q we obtain,

e = Qe, that is, eI = QI
ie
i, (14a)

et = et, (14b)

Since the standard basis for 1-forms take the uniform values of dual basis
covectors, cf. section 2.1, we observe that,

dxI = QI
idxi, ⇒ dx = dx (15a)

dt = dt. (15b)
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Figure 1: Local coordinate system on a vertical 2-manifold Γ .

Equation (15a) is obtained from (3a), (13a). According to the definition of
the single member of the basis for top forms in section 2.1, wedge product
properties and (15) we get Ω = Ω. Finally, the definition of our preferred
basis for d-forms yields,

?dxI = QI
i?dxi, ⇒ ?dx = ?dx (16a)

?dt = ?dt. (16b)

Equation (16a) is derived from (3b) and (14a). Note that dx, ?dx, ?dt, and
Ω are all objective with respect to the choice of the coordinate system, so are
the tensorial parts of the tensor-valued forms introduced in 2.1. That is, as
expected, our formulations are objective with respect to the choice of spatial
coordinate system. Accordingly, in the following section we present a local
coordinate system at a given point which in turn simplifies the subsequent
developments.

2.3.2. Local coordinate system

LetM be an arbitrary manifold in E2×R, as illustrated in figure 1. We are
interested in the local solution at the arbitrary point P on M. To facilitate
a description of the restricted cotangent space T ∗M, we define onM a local
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frame, {ei, et}di=1 : e1 ⊥ T ∗M|Ed , with local coordinates {xi, t}di=1, in which
underlined symbols denote items referred to the local frame. In contrast
to the (d + 1)-manifold, D, where the standard basis for d-forms in local
coordinates is {?dxk, ?dt}dk=1, the basis for d-forms on the d-manifold M is
the singleton set, {?dx1} as dxk|M = ?dt|M = 0 for k 6= 1, since dx1|M = 0.
Thus, only the normal component of the spatial flux F(u) is pertinent when
restricted toM; cf. (8). For example for the second order stress tensor s, cf.
section 4.1, the form s ?dx|M = t ? dx1|M, where t = si1e1 is the traction
vector acting on M. Similarly, for the heat flux vector q, cf. section 4.2, we
have q ?dx|M = q1 ? dx1|M, which is the normal component of the flux. In
short, once a local coordinate system is employed only the computation of
the normal components of the flux are required.

The choice of local coordinate system also correlates well with the one-
dimensional Riemann problem. In the Riemann problem we have two distinct
sets of uniform initial conditions on opposite sides of M which correspond
to the zeroth order terms of the local solution. The jumps of initial condi-
tions across the interface contribute to a nonzero differential of the normal
fluxes while in all tangential directions the flux has zero total differential.
Consequently, in equation (17), only the normal part of the flux differential
Au,n is present and there is no need to compute flux matrices for tangential
directions.

3. Riemann solution for linear hyperbolic systems

Problem 2 (One-dimensional Riemann problem for hyperbolic systems).
The one-dimensional Riemann problem consists of a hyperbolic system

u,t + Au,n = 0, u = {u1, u2, . . . , un}T , (17)

with step data that is piecewise constant but discontinuous along the local x1
coordinate direction:

u =

{
uα, x1 < 0

uβ, x1 > 0,
(18)

The flux Jacobian matrix A is smoothly varying across the domain. The
subscript “,n” denotes the derivative in the normal direction. Source terms
have been dropped in deriving (17) from the hyperbolic system (6); see Re-
mark 1.
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Remark 1. Source terms, whether or not they are solution dependent, do not
affect the Riemann solution in the SDG context. Using the eigenvalue decom-
position A = ΓΛΓ−1, and defining the characteristic variables by w = Γ−1u
the Riemann problem u,t + Au,n = S is transformed into w,t + Λw,n = s,
where s = Γ−1S; cf. (21a), (22) and section 3.2. Accordingly, for char-
acteristic variable wi, we have wi,t + λiwi,n = si. That is, wi = wi(0) +∫ L
0
sidl/

√
1 + λ2i , where wi(0) is the initial condition at t = 0 and the in-

tegration is carried over the ray that connects initial condition to the point
where we seek the Riemann solution along the characteristic direction. How-
ever, in the SDG context, we are looking at the limiting case when the point
of interest is approaching t = 0. Thus, the solution to these differential
equations is entirely determined by the initial values of characteristic vari-
ables and the accumulative contribution of source terms does not influence
our Riemann solutions.

In the semi-discrete setting of most finite volume methods, treatment of
the source term within the (approximate) Riemann solver in not trivial; see,
e.g., [25]. Integrating the flux over both the time step and the cell face ne-
cessitates using an approximated source term that may (or may not) end
up being consistent with the inviscid flux discretization. Our SDG methods
with Riemann solver do not suffer from this disparity; inter-elemental fluxes
are by definition discretized in a manner identical to the cell volumes. Nu-
merical difficulties such as source terms balancing flux gradients are handled
naturally.

3.1. Orientation of surfaces of discontinuity

Let us assume that the solution of the local Riemann problem suffers a
discontinuity along a ray moving with the speed c in (x1, t) plane. Let Q be
a rectangle with long edges on two sides and parallel to the ray. By letting
the short edges approaching zero length and employing (7) and the fact that
?dt = −c ?dx1 along the ray we obtain,

A−u− − cu− = A+u+ − cu+ (19)

where − and + superscripts denote the immediate traces to the left and right
of the ray. If the flux Jacobian matrix A varies smoothly in space and time
it is continuous along the discontinuity and we obtain,

A(u+ − u−) = c(u+ − u−). (20)
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Figure 2: Eigenstructure for a one-dimensional Riemann problem in the {x1, t} plane.
Initial step data is given on the {α, β} sides. The non-causal interface is represented by
the Γαβ ray. The solution regions {Rα, Ri, Rβ}6i=1 partition the spacetime domain into 8
unique solution regions, each separated by a ray corresponding to a characteristic direction.
.

That is the orientation of the discontinuity c should be an eigenvalue of A
and the jump of the solution u+−u− is the corresponding eigenvector for c.

3.2. Diagonalisation of the flux matrix

Figure 2 depicts the eigenstructure for a typical hyperbolic system. In-
formation propagates along the characteristic directions with speed c. The
regions between characteristic directions are denoted by Ri. The interface
Γαβ is said to be causal if it lies in either region Rα or Rβ. Otherwise, it
is non-causal. Riemann solutions on causal manifolds are trivial; they are
simply the earlier-in-time values. Non-causal interfaces pose non-trivial Rie-
mann solutions, and it is that family of solutions we investigate next.

The flux Jacobian matrix A is assumed to be smoothly varying; as such,
it is single-valued on any submanifold M. Also, it arises from a purely
hyperbolic system, so we are assured that it is diagonalisable [26, 27, 28].
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The matrix is diagonalized as

A = ΓΛΓ−1 (21a)

Γ = [γ1| · · · |γn] (21b)

Λ =

 c1 . . . 0
...

. . .
...

0 . . . cn

 (21c)

where c’s are the eigenvalues (ordered smallest to largest) and the γ’s are the
corresponding eigenvectors. If the algebraic multiplicity of an eigenvalue c
is n > 1, its geometric multiplicity is also equal to n for hyperbolic systems
and the system is still diagonalizable. Then the eigenvalue c is repeated n
times in the list {c1, c2, ..., cn}.

We can also introduce a change of variables by lettingw = Γ−1u. Rewrit-
ing (17) in terms of w, we have

w,t + Λw,n = 0, w = {w1, w2, . . . , wn}T . (22)

3.3. Riemann solution

We shall consider the local one-dimensional Riemann problem with step
data given by

u(x1) =

{
uα, x1 < 0,

uβ, x1 > 0.
(23)

Assuming there are (m + 1) distinct eigenvalues (m < n), there are then m
regions between c1 and cn separated by the remaining eigenvalues. In each
of these regions, the solution um is determined by constructing and solving
the following system:

u1 − uα = a1γ1α (24a)

u2 − u1 = a2γ2α (24b)

...

up − up−1 = apγpα (24c)

up+1 − up = ap+1γp+1
β (24d)

...

uβ − um = amγmβ , (24e)
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where cp ≤ cαβ ≤ cp+1, and cαβ corresponds to the speed of the interface
Γαβ. Note that we have purposely delineated between the eigenvectors from
each side of the interface. For non-smoothly varying flux Jacobians (mate-
rial interfaces or non-linearities), these become important; however, in the
present context, γiα = γiβ ∀ i. Also, as mentioned above, if the multiplicity of
an eigenvalue is larger than one, then there are the same number of eigen-
vectors, hence jump conditions, corresponding to it. Thus, (24) is always a
square system on n equations.

We can rewrite system (24) as the jump in the step data by summing
them:

uβ − uα =
[
γ1α| . . . |γpα|γ

p+1
β | . . . |γ

m
β

]
a = Γa. (25)

Solving for a,
a = Γ−1[[u]]. (26)

Now, we utilize the solution structure that the value of u is constant in
any given ‘wedge’ of space that is separated by the characteristics. As such,
we have the piecewise Riemann values in each region given by Eqs. (24)–(26),
e.g. u∗ = up. The flux at the interface for a linear system of equations is
given by

F∗ = u∗?dt + Au∗ ?dx1. (27)

3.4. Semi-analytic Riemann solution

In this section we detail how to calculate the Riemann values and the
corresponding fluxes (and flux Jacobians) without obtaining a closed-form
expression. The only requirement for this method is knowledge of the eigen-
values and eigenvectors of the matrix A, which is many times much easier
than computing the full Riemann solution. The computational cost of this
method is non-trivial, as it does involve a matrix inversion. However, if the
matrix inverse can be obtained analytically, this method is much simpler to
implement than analytic expressions.

We begin by transforming the quantities uα,uβ into wα,wβ via (22) as:

wα = Γ−1uα, wβ = Γ−1uβ. (28)

The solution of this decoupled differential equations is trivial [26, 27]:

w∗ =
{
w1
β, . . . , w

p
β, w

p+1
α , . . . , wmα

}T
. (29)
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We can now invert our transformation of variables and write the Riemann
values as

u∗ = Γw. (30)

In index notation, this becomes

u∗i =

(
p∑
j=1

Γij(Γ
−1)jku

k
β

)
+

(
m∑

j=p+1

Γij(Γ
−1)jku

k
α

)
. (31)

We can combine equations (27) and (30) to obtain a much simpler ex-
pression for the spatial component of the Riemann flux:

Au∗ =
(
ΓΛΓ−1

)
. (Γw) , (32)

which simplifies to
Au∗ = ΓΛw (33)

Since Λij = δijci from (21c), we can simplify the expression as

Aiju
∗
j =

(
p∑
j=1

Γijλ
j(Γ−1)jku

k
β

)
+

(
m∑

j=p+1

Γijλ
j(Γ−1)jku

k
α

)
. (34)

Note that the spatial flux computation given by (34) is extremely similar
to the expression for u∗i in (31). In an implementation, these terms can usu-
ally be computed within a single loop structure to obtain the total spacetime
flux F∗.

Newton-Raphson type solution schemes will require the flux Jacobian
matrix in order to solve the resulting linear system. It is straightforward to
compute the spatial flux Jacobians from (34):

∂Aiju
∗
j

∂ukβ
=

p∑
j=1

Γijλ
j(Γ−1)jk, (35)

∂Aiju
∗
j

∂ukα
=

m∑
j=p+1

Γijλ
j(Γ−1)jk. (36)

The temporal flux Jacobian follows by analogy.
It is worth noting that the semi-analytical approach for Riemann solvers

is incredibly useful. Computer algebra packages can deliver the eigenvalues
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and eigenvectors for a given system fairly easily, even printing the results
directly into specified code languages. The ease of implementation and the
automation help to eliminate bugs from code. For large, tightly coupled sys-
tems of equations, our semi-analytical approach has the benefit of providing
the Jacobian matrices directly rather than relying on the more computation-
ally intensive numerical Jacobians or the more human intensive analytical
Jacobians.

4. Riemann solution examples

Here, we provide some examples of Riemann solution calculations. We
give our results for spatial dimension d = 2; results for d = {1, 3} are straight-
forward extensions. In the following examples, subscripts n and t denote the
normal and tangential components of a field. Numerical results obtained by
using the Riemann solutions detailed herein have been previously published
[1, 2, 3].

4.1. Linearized elastodynamics

The Riemann solution for linearized elastodynamics in standard vector
calculus notation can be found in, for instance, [1, 4, 29, 30], and references
therein.

Let u denote the displacement vector field. The velocity v, and linearized
strain E are given by v = u̇ and E = (∇u + (∇u)T)/2. That is, vi = u̇i and
Eij = (ui,j + uj,i)/2.

The spacetime flux and source terms corresponding to balance of linear
momentum are written as,

Fp = p ?dt− s ∧ ?dx, Sp = ρbΩ (37)

where p, s, and b are linear momentum density, stress, and body force per unit
mass forms, respectively. The material density per unit volume is denoted
by ρ. In absence of discontinuities, the application of Stokes theorem on (37)
yields,

∇ · s + ρb− ṗ = 0 (38)

which is the familiar equation of motion.
The force-like fields s and p are related to kinematic fields through con-

stitutive equations. For isotropic materials we have sij = λδijEkk + 2µEij,
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where λ and µ are the Lamé parameters. Furthermore, the linear momentum
density is given by pi = ρvi.

We augment the balance law (37) with compatibility equations so that
the elastodynamics problem is cast in the form of a system of first order
equations. This enables us to derive the A matrix in (17). The spacetime
flux and source term corresponding to the compatibility of displacement and
velocity fields is given by,

Fu = u ?dt, Su = vΩ (39)

Finally, the compatibility between strain and velocity is stated as,

Ėij −
1

2
(vi,j + vj,i) = 0 (40)

which can be expressed as a balance law with temporal flux of {E11, E12, E22}
and zero source term. Accordingly, the spatial flux is obtained from appro-
priate terms of velocity field.

Equations (37), (39), and (40) comprise the balance laws for the linearized
elastodynamics problem. We define the 3-tuple of balance fields

u =


u
p
E

 . (41)

It is often convenient to refer to the components of (41) as

{ui}7i=1 = {un, ut, ρvn, ρvt, Enn, Ent, Ett}. (42)

The eigenvalues are given by,

{c}7i=1 = {−cD,−cS, 0, 0, 0, cS, cD} , (43)

where cD and cS are longitudinal and shear wave speeds, respectively,

cD =

√
λ+ 2µ

ρ
, cS =

√
µ

ρ
. (44)

16



The corresponding eigenvectors are

γ1 = {0, 0, ρcD, 0, 1, 0, 0}, (45a)

γ2 = {0, 0, 0, 2ρcS, 0, 1, 0}, (45b)

γ3 = {1, 0, 0, 0, 0, 0, 0} (45c)

γ4 = {0, 1, 0, 0, 0, 0, 0} (45d)

γ5 = {0, 0, 0, 0,−λ, 0, λ+ 2µ} (45e)

γ6 = {0, 0, 0,−2ρcS, 0, 1, 0}, (45f)

γ7 = {0, 0,−ρcD, 0, 1, 0, 0}. (45g)

According to (43) the longitudinal and shear wave speeds plus zero wave
speed divide the non-causal region into four regions of R1 to R4. The Rie-
mann solutions are given by,

u∗1 =

{
fα1 if Γαβ is in R1 or R2

fβ1 if Γαβ is in R3 or R4

(46a)

u∗2 =

{
fα2 if Γαβ is in R1 or R2

fβ2 if Γαβ is in R3 or R4

(46b)

u∗3 = 〈〈f3〉〉+
ρcD
2

(
[[f5]] +

λ

λ+ 2µ
[[f7]]

)
, for all regions (46c)

u∗4 =


fα4 if Γαβ is in R1

〈〈f4〉〉+ ρcS [[f6]] if Γαβ is in R2 or R3

fβ4 if Γαβ is in R4

(46d)

u∗5 =
1

2ρcD
[[f3]] + 〈〈f5〉〉+

λ

2(λ+ 2µ)
[[f7]] , for all regions (46e)

u∗6 =


fα6 if Γαβ is in R1

1
4ρcS

[[f4]] + 〈〈f6〉〉 if Γαβ is in R2 or R3

fβ6 if Γαβ is in R4

(46f)

u∗7 =

{
fα7 if Γαβ is in R1 or R2

fβ7 if Γαβ is in R3 or R4

(46g)

where [[(·)]] := (·)β−(·)α and 〈〈(·)〉〉 := {(·)α+(·)β}/2 are the jump and average
operators.
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4.2. Non-Fourier heat conduction

Non-Fourier heat conduction models do not use the typical Fourier law
q = −κ∇T , where q, κ, T are the heat flux, thermal conductivity, and tem-
perature, respectively. We will use a modified heat conduction relation,
known as the Maxwell-Cattaneo-Vernotte (MCV) model [3], that relates the
heat flux to the temperature gradient through the relation

1

κ
(τ q̇ + q) +∇T = 0, (47)

where τ is the thermal relaxation time. Note that for simplicity, but without
loss of generality, we have assumed an isotropic medium; this reduces the
second-order conduction tensor field κ to a scalar field. The exact Riemann
solution for this problem can be found in [31, 3].

We combine the constitutive relationship (47) with the balance of energy
equation to define the non-Fourier thermal problem. We introduce the 2-
tuple of balanced fields

u =

{
u1

u2

}
=

{
CT

(τ/κ)q

}
, (48)

with components

{u1, u2, u3} =
{
CT,

τ

κ
qn,

τ

κ
qt

}
. (49)

The spacetime flux and source terms are written as

F(u) =

{
F1

F2

}
=

{
CT?dt + q ∧ ?dx

(τ/κ)q?dt + T ?dx

}
, S(u) =

{
S1

S2

}
=

{
0

(1/κ)qΩ

}
.

(50)
The eigenvalues for the hyperbolic MCV system are

{c}3i=1 = {−cT , 0, cT} , cT =

√
κ

Cτ
. (51)

The corresponding eigenvectors are

γ1 = {−
√
Cκ

τ
, 1, 0}, (52a)

γ2 = {0, 0, 1}, (52b)

γ3 = {
√
Cκ

τ
, 1, 0}. (52c)
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At this point, the Riemann solution and face fluxes can be assembled
according to the procedure detailed in section 3. For this simple case, the
analytic Riemann solution is

u∗1 = 〈〈u1〉〉 − 1

2
ξ
[[
u2
]]

if Γαβ is in R1 or R2 (53a)

u∗2 = 〈〈u2〉〉 −
1

2ξ
[[u1]] if Γαβ is in R1 or R2 (53b)

u∗3 =

{
uα3 if Γαβ is in R1

uβ3 if Γαβ is in R2

(53c)

where ξ :=
√
Cκ/τ .

4.3. Generalized linear thermoelasticity

One form of generalized linear thermoelasticity is obtained by combining
the MCV equations in 4.2 with linearized elastodynamics in 4.1 through the
stress constitutive equation and mechanical energy into the energy balance
equation. The resulting thermomechanical theory is known as generalized
thermoelasticity with one relaxation time. A full discussion on thermoelas-
ticity with finite wave speeds can be found in [32]. The stress now depends
on the temperature as

sij = λδijEkk + 2µEij + δijk, (54)

where ‘k id’ is the isotropic stress-temperature tensor. The energy equa-
tion is augmented by the term “(T0k)∇ · v” [33], where T0 is the reference
temperature.

The Fourier conduction law has been replaced with a hyperbolic version,
which renders the coupled system entirely hyperbolic. The fully coupled
wavespeeds can be written in terms of the uncoupled wavespeeds as

cd =

[
1

2

(
c2D + c2T + β −

√
−4c2Dc

2
T + (c2D + c2T + β)2

)] 1
2

(55a)

ct =

[
1

2

(
c2D + c2T + β +

√
−4c2Dc

2
T + (c2D + c2T + β)2

)] 1
2

, (55b)

where β = T0k
2/Cρ.
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We write the system of coupled equations in terms of the fields {u, ρv,E, CT, τq/κ}.
The scalar components of our system are then

u = {ui}10i=1 =
{

un, ut, ρvn, ρvt, Enn, Ent, Ett, CT,
τ

κ
qn,

τ

κ
qt

}
(56)

The eigenvectors of the system can be simplified and written as

γ1 = {0, 0, ρc2D(ct − cT )(ct + cT ), 0, ct(c
2
D − c2d), 0, 0,−c2DctCθ, cD2θ, 0},

(57a)

γ2 = {0, 0, ρc2D(cd − cT )(cd + cT ), cd(cD − ct)(cD + ct), 0, 0,−c2DcdCθ, c2Dθ, 0},
(57b)

γ3 = {0, 0, 0, 2ρcS, 0, 1, 0, 0, 0, 0}, (57c)

γ4 = {0, 1, 0, 0, 0, 0, 0, 0, 0, 0}, (57d)

γ5 = {0, 0, 0, 0, 0, 0, 0, 0, 0, 1}, (57e)

γ6 = {0, 0, 0, 0,−λ, 0, ρc2D, 0, 0, 0}, (57f)

γ7 = {1, 0, 0, 0, 0, 0, 0, 0, 0, 0}, (57g)

γ8 = {0, 0, 0,−2ρcS, 0, 1, 0, 0, 0, 0}, (57h)

γ9 = {0, 0, ρc2D(cd − cT )(cd + cT ), cd(c
2
t − c2D), 0, 0, Ccdc

2
Dθ, c

2
Dθ, 0}, (57i)

γ10 = {0, 0, ρc2D(ct − cT )(ct + cT ), ct(cd − cD)(cd + cD), 0, 0, Cc2Dctθ, c
2
Dθ, 0}.

(57j)

where θ = T0K/C. Using these eigenvalues (i.e. the wavespeeds) and eigen-
vectors, the Riemann solution is obtainable via the procedure described in
Section 3. To the authors’ knowledge, this is the first work to provide the
Riemann solutions for generalized thermoelasticity with one relaxation time.

We would like to note that this example is one in which the coupling
between solution fields makes it extremely tedious and time consuming to
write out the closed-form analytic expression for the Riemann solution. As
an indication of how complicated the analytic solutions can become, consider
a homogeneous, isotropic medium, such that there are no jumps in material
properties. Then, in region R4, the simplest non-trivial solution is

(u8)
∗ = CT ∗ = 〈〈u8〉〉 −

1

2ρ(cd + ct)

(
ρC(cdct + c2T ) [[u9]] + kT0 [[u3]]

)
(58)

In general, the non-trivial solutions are comprised of an averaged quantity
and a linear combination of jumps in all other quantities. However, the
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eigenvectors are simple enough that the solution procedure of 3 makes the
implementation of an exact (albeit semi-analytic) Riemann solver tractable,
if not easy.

4.4. Inviscid gas dynamics

The Euler equations of inviscid gas dynamics are a highly non-linear set
of equations. As such, the textbook diagonalisation method we have ap-
plied is insufficient for solving the Riemann problem. The exact solution of
the Riemann problem requires (Newton-Raphson) iterations, making it com-
putationally expensive when evaluating it at every quadrature point on all
non-causal faces. It is commonplace to substitute an approximate Riemann
solution. We shall discuss one such approximate Riemann solution technique
which allows us to use the diagonalisation procedure after linearizing the
system. There are many choices of approximate Riemann solvers for this
problem; see [28] for a general discussion.

The balanced quantities of mass, momentum, and energy density are
denoted as

u = {ρ,m, E}. (59)

We write the spacetime fluxes as

F(u) =


Fρ

Fm

FE

 =


ρ?dt + m ∧ ?dx

m?dt + 1
ρ
m⊗m + pI?dx

1
ρ

[Em + σ(m)] ?dx

 . (60)

where the pressure is given by

p =
1

γ − 1

(
E − 1

2ρ
(m ·m)

)
(61)

The scalar components of our system in local coordinates are then

u = {ui}4i=1 = {ρ,mn,mt, E} (62)

The eigenvalues of the non-linear flux Jacobian are

{c}4i=1 = {u− cE, u, u, u+ cE} , cE =

(
γp

ρ

) 1
2

, u =
mn

ρ
. (63)
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The corresponding eigenvectors simplified and written as

γ1 = {2ρ2, 2ρ(mn − ρc), 2ρmt,m
2
n +m2

t − 2ρmnc+
2ργp

γ − 1
}, (64a)

γ2 = {2ρ2, 2ρmn, 0,m
2
n −m2

t}, (64b)

γ3 = {2ρmt, 2mnmt,m
2
t −m2

n, 0}, (64c)

γ4 = {2ρ2, 2ρ(mn + +ρc), 2ρmt,m
2
n +m2

t − 2ρmnc+
2ργp

γ − 1
} (64d)

Note that the wavespeeds in (63) and the eigenvectors in (64) are depen-
dent on the primitive variables, contrary to our previous examples.

The Vijayasundaram flux [34] has been used previously within the context
discontinuous Galerkin methods (e.g., cf. [35, 36, 37, 38, 39]). On the bound-
ary surface of each element (non-causal in our case), the eigenvalues/vectors
are evaluated using the average of the primary variables (62) at the previ-
ous timestep or iteration. The implicit flux, which is now linear, is obtained
through application of (34). Non-arithmetic averaging (e.g. Roe averaging)
procedures can also be used to obtain approximate Riemann solutions/fluxes
that can be computed in a similar manner.

5. Conclusions

In this paper, we have reviewed a Riemann solution process as it per-
tains to our SDG methodology [1, 3, 2]. The review of differential forms and
coordinate transformations provides other finite element/numerical methods
researchers a clear picture of the details behind our SDG methods. The
generalized Riemann solution procedure relies on a standard diagonalization
of the linearized flux Jacobian, and it is exact for linear systems of equa-
tions. Our semi-analytic Riemann solution method shows that implementing
and using an exact Riemann solver need not be overly complicated for SDG
methods. We have provided complete Riemann solutions for linear elas-
todynamics, hyperbolic heat conduction, generalized thermoelasticity, and
inviscid gas dynamics.

Exact Riemann problems for non-linear systems of equations share a very
similar solution structure with the linear systems discussed herein [4]. The
methodology presented herein can be used if the flux Jacobian is linearized, as
demonstrated in 4.4; however, the resulting Riemann solution is approximate.
In future work we will discuss an extension and implementation of a similar
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solution method for the exact Riemann solution of non-linear hyperbolic
systems. We will also extend our methodology to material interfaces, where
material properties are not necessarily continuous.
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