
Balance laws
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Motivation

Why start with a balance law?
They are the actual physics laws.
They contain more information than their corresponding PDEs.
Larger solution space than the PDEs.

Can we directly start the FE formulation from a PDE?
Yes, FE formulation starts from a differential equation.
A PDE may not be derived from a balance law.
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Balance law for discrete systems (Statics)

P

r

P

Newton’s law:

F = Σfi = −f1 − f2 + P = 0 ⇒ r =
P

k1 + k2
(1)

The unknowns of discrete point(s) can be obtained from the solution of one
or a system of equations.
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Balance law for continuum(Statics for solids)

F = 0 ⇒ (2)

F = Fs + Fv =

∫
∂ω

dFs +

∫
ω

dFv = 0, where

Fs = Sum of forces from tractions t (boundary flux) on the boundary of ω

Fv = Sum of forces from body force b (source term) inside ω

dFs = tds = (σ.n)ds = σ.ds

dFv = ρbdv ∂ω = boundary of ω
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Balance law for continuum(Statics for solids)

The balance law is valid for arbitrary domains ω:

∀ω ⊂ D :

∫
∂ω

t ds +

∫
ω

ρb dv = 0 (3)

that is

∫
∂ω

σ.ds +

∫
ω

ρb dv = 0

Note that ds = nds (boldface is used for tensor quantities)
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Balance law for discrete systems (Dynamics)

F = dP
dt

P = mv = linear momentum

}
⇒ F = m

dv

dt
= ma (4)

Another representation is using the “Impulse” J for the force F over the
time interval ∆t:

J =

∫
∆t

Fdt (5)

then Newton’s second law reads as

J = ∆P (6)

Advantage: P does not need to be differentiable

P(t)

r

P(t)
m

F = P (t)− f1 − f2 = ma ⇒ (7)

mr̈ + (k1 + k2)r = P (t) (8)

can solve the DE with FEM
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Balance law for continuum(Dynamics for solids)

First approach (similar to F = dP
dt

for discrete systems):

∀ω ⊂ D : F =
dP

dt
⇒∫

∂ω

σ.ds +

∫
ω

ρb dv =
d

dt

∫
ω

p dv (9)

note that P =
∫
ω

p dv where p is the linear momentum density defined by:

p =
dP

dV
=

(dm)v

dV
=

(ρdV )v

dV
= ρv (10)
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Balance law for continuum(Dynamics for solids)

Second approach (similar to J =
∫
∆t

F dt = ∆P for discrete systems):

∀Ω = ω × I ⊂ D : J =

∫ t1

t0

F= P(t1)−P(t0) ⇒∫ t1

t0

(∫
∂ω

σ.ds

)
dt+

∫ t1

t0

(∫
ω

ρb dv

)
dt =

∫
∂Ω+

T

p dv −
∫
∂Ω−

T

p dv
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second approach continued . . .

∫
∂ΩS

σ. (dsdt) +

∫
Ω

ρb (dvdt) =

∫
∂Ω+

T

p dS+
T −

∫
∂Ω−

T

p dS−T
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second approach continued . . .

∫
∂ΩS

(σ.n) dSS︸︷︷︸
dsdt

+

∫
Ω

ρb dV︸︷︷︸
dvdt

=

∫
∂Ω+

T

p dS+
T +

∫
∂Ω−

T

p (−dS−T )
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second approach continued . . .

∫
∂ΩS

−
[
−σ p

]
.

NS︷ ︸︸ ︷[
n

0

]
︸ ︷︷ ︸

σ.n

dSS +

∫
Ω

ρb dV =

∫
∂Ω+

T

[
−σ p

]
.

N+
T︷ ︸︸ ︷[

0

1

]
︸ ︷︷ ︸

p

dS+
T +

∫
∂Ω−

T

[
−σ p

]
.

N−
T︷ ︸︸ ︷[

0

−1

]
︸ ︷︷ ︸

−p

dS−T
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second approach continued . . .

Let us define the spacetime flux M by:

M =
[
−σ p

]
(11a)

p = linear momentum = temporal flux = conserved quantity (11b)

−σ = −stress = total outward spatial flux (11c)

then ∫
∂Ω+

T
M.N+

T dS+
T +

∫
∂Ω−

T
M.N−T dS−T

+
∫
∂ΩS

M.NS dSS =
∫
Ω
ρb dV

∂Ω+
T ∪ ∂Ω

−
T ∪ ∂ΩS = ∂Ω disjoint union

 ⇒

∫
∂Ω

M.dS =

∫
∂Ω

M.N dS =

∫
Ω

ρb dV (12)
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General form of balance laws

For a general conservation law let:

ft: conserved quantity = temporal flux

fx: total outward spatial flux

r: source term

then the balance law for dynamics reads:

∀ω ⊂ D ∧ ∀t :

∫
ω

r dv −
∫
∂ω

fx.ds =

∫
ω

r dv −
∫
∂ω

(fx.n) ds =
d

dt

∫
ω

ft dv (13)

For static case the RHS is zero (i.e., the quantity
∫
ω

ft dv remains constant). The static
balance law reads:

∀ω ⊂ D :

∫
ω

r dv −
∫
∂ω

fx.ds =

∫
ω

r dv −
∫
∂ω

(fx.n) ds = 0 (14)

These can be directly compared to F = dP/dt and F = 0 in previous
discrete examples.
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General form of balance laws using spacetime flux

Using the same definitions from
previous page we define the spacetime
flux by

F = [fx|ft] (15)

then the balance law for dynamics

reads:

∀Ω ⊂ D :

∫
∂Ω

F.dS−
∫
Ω

r dV =

∫
∂Ω

(fx.nx + ftnt)dS−
∫
Ω

r dV = 0 (16)

This can be directly compared to
∫
∆t

F = ∆P in previous discrete examples.
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