
Discretization
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Discretization of the solution

Discretization means reducing the infinite number of unknowns of the continuum problem
to a discrete set of unknowns. Often, the discrete solution does not exactly match the
exact solution. The accuracy of the approximation typically improves by increasing the
number of unknowns.

We denote the number of unknowns by n.

Some common forms of discretization are:

1 Values at a finite number of positions represent the solution:

Solution u is represented by: {u(x1), u(x2), . . . , u(xn)}.

This approach is used by Finite Difference (FD) and Finite Volume(FV) methods.
2 Solution is represented by a finite number of functions:

uh(x) = φp(x) +
n∑
i=1

aiφi(x)

where uh is the symbol for discrete solution and φi(x) are trial or test functions.

φp(x) is set to satisfy essential boundary conditions and will be discussed later.

This approach is used by (discrete) weighted residual method, weak form, least

square, and Ritz energy method.
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Equations for discrete systems

After discretizing the solution with n unknowns we need n equations to solve the discrete
problem.
The n equations are derived from different interpretation of the equations we derived so
far. All these equations have a “for all” condition. In discrete systems the “for all”
condition is replaced by a finite set.

Approach Equation Figure Discretization Discretization
method

Balance
Law
(20)

∀Ω ⊂ D :
∫
∂Ω(f .n)ds−∫

Ω r dv = 0
Change ∀Ω to
{Ω1, Ω2, . . . , Ωn}

Similar to
subdomain
method in
WRM

Strong
Form
(23)

∀x ∈ D : ∇.f − r = 0 Change ∀x to
{x1,x2, . . . ,xn}

Collocation
method in
WRM. Also
FD & FV.

Energy
Method
(80)

∀ỹ ∈ V : Π(y) ≤ Π(ỹ) ∀{ã1, . . . , ãn} :
Π(a1, . . . , an) ≤
Π(ã1, . . . , ãn) ⇒
∂Π
∂a1

= · · · = ∂Π
∂an

= 0

Ritz Energy
Method.
Also yields
Weak Form.
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Equations for discrete systems

Approach Equation Figure Discretization Discretization
method

Weighted
Resid-
ual
Method
(45)

∀w ∈ W :∫
Dw.Ri dv +∫
∂Df

wf .Rf ds = 0

Change ∀w to
{w1,w2, . . . ,wn}

Weighted
Residual
Method
(WRM)

Least
Square
(51)

R2 =
∫
DR

2
i dv +∫

∂Df
R2
f ds = 0

Change R2 = 0
to ∀{ã1, . . . , ãn} :
R2(a1, . . . , an) ≤
R2(ã1, . . . , ãn) ⇒
∂R2

∂a1
= · · · = ∂R2

∂an
= 0

Least
Square
method, a
WRM for
linear LM
(& Lf ).

Weak
Form
(74)

∀w ∈ W∫
D L

w
m(w)Lm(u) dv =∫

Dw.rdv+
∫
∂Df

w.̄f ds

Change ∀w to
{w1,w2, . . . ,wn}

Weak For-
mulation
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Discrete systems

In all approaches described, a continuum problem is discretized to a
system of finite (n) unknowns. We observed how in each approach,
by enforcing n discrete conditions corresponding to the continuum
version, we could derive a system of n equations for n unknowns.

The differential operators LM (Lm for weak form) and Lf can all be
nonlinear. In that case we obtain an n by n system of nonlinear
equations.

In all the approached discussed except Finite Difference and Finite
Volume for the discrete version of the strong form, the solution is
approximated by the summation of finite number of trial functions.
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Trial functions

As mentioned before, it is almost always beneficial (or necessary, e.g., for energy
method) to strongly satisfy the essential boundary conditions. That is the solution
u.

u ∈ V = {v |v ∈ CM (D), ∀x ∈ ∂Du Lu(u) = ū} (116)

We observe that for all the approached in the previous table, the solution u is
approximated with trial functions φi (φi are assumed to be linearly independent):

u ≈ uh =

n∑
j=1

ajφj + φp where (117a)

u = continuum (exact) solution (117b)

uh = discrete (approximate) solution (117c)

φj = trial (test) functions (117d)

aj = Unknown coefficients (unknowns of the discrete problem) (117e)

φp = A solution satisfying essential boundary conditions (117f)
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Trial functions

We still want to enforce the essential boundary conditions for the discrete solution
u. We define,

V0 = {v |v ∈ CM (D), ∀x ∈ ∂Du Lu(u) = 0} (118)

Thus we observe,

∀i φi ∈ V0

φp ∈ V

}
⇒ ∀x ∈ ∂Df uh(x) =

n∑
j=1

ajφj(x) +φp(x) = 0 + ū = ū (119)

That is, the discrete solution strongly satisfies the essential boundary conditions.

Function requirements for φj and φp:

Function space Continuity Requirement Boundary Conditions

φi ∈ V0 φi ∈ CM (D) Trial functions satisfy homoge-
neous essential boundary condi-
tions

φp ∈ V φp ∈ CM (D) A particular function satisfies the
essential boundary conditions

Note that if all the essential boundary conditions are zero, there is no need for the
function φp (i.e., φp can be chosen to be identically zero).
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Discrete function spaces (Optional)

The continuum function space V0 is infinite dimensional.
We seek a discrete solution uh of the form (117a):

u ≈ uh =
n∑
j=1

ajφj + φp

where as mentioned before all φj ∈ V0.
The function space Vh0 is defined as:

Vh0 = {
n∑
j=1

αjφj | ∀αj ∈ R} (120)

This is nothing but the span of the functions φj :

span(φ1, . . . ,φn) = [φ1, . . . ,φn] = {
n∑
j=1

αjφj | ∀αj ∈ R} (121)

V0 and Vh0 are both vector spaces with Vh0 being a subspace of V0.
Eventually, we define the discrete function space Vh as,

Vh = φp + Vh0 := {v = φp + v0| v0 ∈ Vh0 } = {v = φp +
n∑
j=1

αjφj | ∀αj ∈ R} (122)

where φp can be any arbitrary function in V.
The discrete solution space Vh is n-dimensional (φi must be linearly independent).
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Discrete function spaces (Optional)

Similar to the discrete solution space, we need to formalize the discrete weight function
space for the methods that utilize a weight function (weighted residual and weak
statement).

For these methods, at continuum we require a statement to hold for all weight functions
in W.

In discrete setting, as the solution space is n dimensional, we need to form an
n-dimensional subspace of W.

Thus, we choose n linearly independent weight functions wi ∈ W to define a discrete
weight function space Wh:

Wh = span(w1, . . . ,wn) = [w1, . . . ,wn] = {
n∑
j=1

αjwj | ∀αj ∈ R} (123)

Weight functions always appear as linear differential operators in weighted residual and
weak statements. Thus, we only need to enforce the discrete statement for n weight
functions in Wh and the weak integral statement automatically holds for all w ∈ Wh.
For example, consider the sample weighted residual statement below:

∫
D

w.Ri dv = 0 then

∫
Dw1.Ri dv = 0∫
Dw2.Ri dv = 0

}
⇒

∀α1, α2 ∈ R :

∫
D

(α1w1 + α1w2).Ri dv = α1

∫
D

w1.Ri dv + α2

∫
D

w2.Ri dv = 0
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Summary: Discrete function spaces

To find a discrete solution of the form u ≈ uh =
∑n
j=1 ajφj + φp , based on the space

V = {v |v ∈ CM (D, ∀x ∈ ∂Df Lu(u) = ū} (116) we define the vector space (118):

V0 = {v |v ∈ CM (D,∀x ∈ ∂Du Lu(u) = 0}

and choose n linearly independent trial functions φj ∈ V0 and an arbitrary φp ∈ V.

The the discrete solution space is an n-dimensional function space given by (122):

Vh = φp + Vh0 := φp + {
n∑
j=1

αjφj | ∀αj ∈ R} = {v = φp +
n∑
j=1

αjφj | ∀αj ∈ R}

For problems that are stated based on weight functions (weighted residual and weak
problem), based on the continuum weight function space W, we choose n linearly
independent weight functions wi ∈ W and form the discrete weight function space (123):

Wh = span(w1, . . . ,wn) = {
n∑
j=1

αjwj | ∀αj ∈ R}

Due to linearity of the weight functions in weighted statements we only need to satisfy the
discrete statement for n weight functions in Wh (for example w1, . . . ,wn) to ensure its
satisfaction for all w ∈ Wh.
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Indicial notation

For brevity we follow the following notations

ajbj =

n∑
j=1

ajbj Einstein notation (124a)

statement for ai : statement for all i ∈ {1, 2, . . . , n} (124b)

The range of indices depend on a particular problem. For example for φi,
n refers to the number of test functions and for tensor expressions such as
σij = Cijklεkl it refers to spatial dimension.
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Matrix equations for discrete systems

For all the discrete systems discussed we obtain a n by n system of equations.

To better understand the details of each approach we assume the differential
operators LM (Lm weak form) and Lf are all linear. The same solution process
with minor modification can be applied to nonlinear problems where a linear
system of equation should be solved for each solution iteration.

For linear systems, we obtain a linear matrix equation of the form:

Ka = F (125)

where K is an n× n matrix and a and F are solution coefficient and right hand
side (force) vectors, respectively.

Linear independence of trial (and weight functions when applicable) is an essential
condition for the solvability of (125) (i.e., det K 6= 0).

Next, we obtain the matrix equation (125) for various discrete solution schemes
and show that several of them can be cast into a weighted residual form.
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Weighted Residual Method

We want to obtain the discrete solution corresponding to the continuum weighted residual state-
ment (45):

Find u ∈ V such that ∀w ∈ W :

∫
D

w.Ri(u) dv +

∫
∂Df

wf .Rf (u) ds = 0

wf refers to the form of the weight functions used for the boundary integrals. Often, it is the

same as w (that is wfi = wi) but to keep the generality, wfi corresponds to wi.

By changing u to uh ∈ Vh and restricting w to Wh:

Find uh ∈ Vh such that ∀w ∈ Wh :

∫
D

w.Ri(uh) dv +

∫
∂Df

wf .Rf (uh) ds = 0 (126)

For uh =
∑n
j=1 ajφj + φp (117a) we have,

Ri(u) = LM (u)− r
Rf (u) = f̄ − Lf (u)

LM (u), Lf (u) : assumed to be linear
uh = ajφj + φp

⇒
(127)

Ri(uh) = ajLM (φj) + (LM (φp)− r) = [LM (φ)]T[a] + (LM (φp)− r)
Rf (uh) = −ajLf (φj) + (̄f − Lf (φp)) = −[Lf (φ)]T[a] + (̄f − Lf (φp))

(128)
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Weighted Residual Method

In (127) the row and column matrix product is:

[LM (φ)]T[a] =
[
φ1 φ2 · · · φn

]

a1

a2

...
an

 = ajφj (129)

We plug (127) into (126) to obtain,

Find [a] =
[
a1 a2 · · · an

]T
such that∫

D
[w].

{
[LM (φ)]T[a] + (LM (φp)− r)

}
dv +∫

∂Df
[wf ].

{
−[Lf (φ)]T[a] + (̄f − Lf (φp))

}
ds = 0 ⇒{∫

D
[w].[LM (φ)]T dv −

∫
∂Df

[wf ].[Lf (φ)]T ds

}
[a] ={∫

D
[w].(r− LM (φp)) dv +

∫
∂Df

[wf ].(Lf (φp)− f̄) ds

}
(130)

[w] and [wf ] correspond to vectors of weight functions on D and ∂Df :

[w] =

w1

...
wn

 and [wf ] =


wf1

...

wfn

 (131)
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Weighted Residual Method

According to equations (125), and (130), for a given φp the solution to the discrete
weighted residual statement (126) is obtained from Ka = F:

K =

∫
D

[w].[LM (φ)]T dv −
∫
∂Df

[wf ].[Lf (φ)]T ds (132a)

F =

∫
D

[w].(r− LM (φp)) dv +

∫
∂Df

[wf ].(Lf (φp)− f̄) ds (132b)

or alternatively the individual components are given,

Kij =

∫
D

wiLM (φj) dv −
∫
∂Df

wf
i Lf (φj) ds (133a)

Fi =

∫
D

wi(r− LM (φp)) dv +

∫
∂Df

wf
i (Lf (φp)− f̄) ds (133b)

After solving for a the discrete solution is obtained from uh =
∑n
j=1 ajφj + φp (117a).
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Weighted Residual Method: Weight options

Weighted residual method is the basis of many numerical methods. In the following we
only discuss a few of the weight function options and elaborate how they are related to
the continuum principles discussed in the table at the beginning of the section:

Subdomain method: Weight functions are the so-called characteristic functions of
arbitrary sets Ω ⊂ D. As will be discussed, this choice of weighted functions
resemble satisfaction of the balance law for a finite number of Ωi.

Collocation method: The weight functions are delta Dirac “functions”. This form
corresponds to satisfaction of the strong form (differential equations) at a finite
number of points.

Least Square method: For linear operators LM and Lf we observe that least
square method corresponds to a particular choice of weight function in weighed
residual method.

Galerkin method corresponds to weight function being equal to trial functions. A
large group of numerical methods, including spectral and various finite element
methods fall into this group.
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Weighted Residual Method: Subdomain Method

We define the characteristic function for the set Ω ⊂ D

χΩ(x) =

{
1 x ∈ Ω
0 otherwise

(134)

In subdomain method, the weight functions are n characteristic
functions for sets Ω1, . . . , Ωn:

[w] =

χΩ1

χΩ2

...χΩn

 (135)
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Weighted Residual Method: Subdomain Method

According to (135) and (132) the matrix equations for the subdomain method are:

K =

∫
D

[χΩi ].[LM (φ)]T dv −
∫
∂Df

[χΩi ].(Lf (φp)− f̄) ds (136a)

F =

∫
D

[χΩi ].(r− LM (φp)) dv +

∫
∂Df

[χΩi ].(Lf (φp)− f̄) ds (136b)

Based on (134) and (133) the component expressions are:

Kij =

∫
Ωi

LM (φj) dv −
∫
∂(Ωi)f

Lf (φj) ds (137a)

Fi =

∫
Ωi

wi(r− LM (φp)) dv +

∫
∂(Ωi)f

(Lf (φp)− f̄) ds (137b)

where ∂(Ωi)f := Ωi ∩ ∂Df is the intersection of the boundary of Ωi with natural
boundary ∂Df .
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Optional: Subdomain Method vs. Balance laws

In subdomain method for a weight function w = χΩ the discrete solution uh ∈ Vh
satisfies (126):

∫
Ω

Ri(uh) dv +

∫
∂Ωf

Rf (uh) ds = 0 (138a)

∂Ωf = ∂Ω ∩ ∂Df (138b)

If the residuals are obtained from a balance law we have,

Ri(uh) = ∇.F(uh)− r residual of strong form (139a)

Rf (uh) = f̄ − f(uh) residual of natural boundary condition (139b)

where F, r, f̄ are the flux tensor, source term, and natural boundary flux for the
given balance law, respectively. The vector f(uh) = F(uh).N is the flux through
the boundary and N is the normal vector.
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Optional: Subdomain Method vs. Balance laws

We plug (139) for the weight function χΩ and employ divergence theorem to obtain,

∫
Ω
∇.F(uh)− r dv +

∫
∂Ωf

{̄
f − f(uh)

}
ds = 0 Divergence theorem ⇒∫

∂Ω
F(uh).N︸ ︷︷ ︸

f(uh)

ds +

∫
∂Ω∩∂Df

{̄
f − f(uh)

}
ds =

∫
Ω

r dv⇒

∫
∂Ω\∂Df

f(uh) ds +

∫
∂Ω∩∂Df

{
f(uh) +

[̄
f − f(uh)

]}
ds =

∫
Ω

r dv ⇒∫
∂Ω\∂Df

f(uh) ds +

∫
∂Ω∩∂Df

f̄ ds =

∫
Ω

r dv

That is if we define the numerical flux f∗ we conclude,

f∗(u(x)h) =

{
f(u(x)h) x ∈ ∂Ω \ ∂Df
f̄(x) x ∈ ∂Ω ∩ ∂Df

(140)

Subdomain WR method for Ω is equivalent to the balance law with respect to f∗∫
∂Ω

f∗(uh) ds =

∫
Ω

r (141)
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Summary: Subdomain Method vs. Balance laws

We mentioned that for the solution for the discrete problem, we seek for an “approximate solution” of the form

uh =
∑n
j=1 ajφj + φp (117a) in the n-dimensional space Vh.

The n equations for the solutions of the unknowns ai can be formed by,

Subdomain method

For weight functions wi = χΩi the weighted residual

statement is ∀i ∈ {1, . . . , n} (cf. (126) and (138)):

∫
D

wi.Ri(u
h

) dv +

∫
∂Df

w
f
i .Rf (u

h
) ds = 0

∫
Ωi

Ri(u
h

) dv +

∫
∂(Ωi)f

Rf (u
h

) ds = 0

Balance law approach

We demonstrated that the subdomain weighted residual
statement is equivalent to satisfying the balance law for
∀i ∈ {1, . . . , n} (cf. (141)):

∫
∂Ωi

f
∗
(u
h

) ds =

∫
Ωi

r

The numerical flux f∗ is defined by (140):

f
∗
(u(x)

h
) =

{
f(u(x)h) x ∈ ∂Ωi \ ∂Df
f̄(x) x ∈ ∂Ωi ∩ ∂Df

Optional: While for continuum solution f∗ = f everywhere (because natural BCs are strongly satisfied) in discrete setting the

definition of f∗ ensures the statement of the balance law with respect to the correct flux f̄ on ∂Df .
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Weighted Residual Method: Collocation Method

While subdomain method corresponds to discrete version of balance laws, the
collocation method corresponds to discrete satisfaction of the strong form

For simplicity, we assume that φp not only satisfies both essential and natural
boundary conditions while functions φi satisfy the homogeneous version of both
boundary conditions. Thus, the discrete solution uh strongly satisfies all the
boundary conditions. We want to demonstrate how the collocation method
satisfies the strong form at finite number of points.

With the temporary change the discrete weighted residual (126) simplifies to,

Find uh ∈ Vh such that ∀w ∈ Wh :

∫
D

w.Ri(uh) dv = (142)∫
D

w.{LM (uh(x))− r} dv = 0
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Weighted Residual Method: Collocation Method

In collocation method, the weight functions are defined as,

wi(x) = δ(x− xi) for i ∈ {1, 2, . . . , n} (143)

where x1,x2, . . . ,xn are n arbitrary points in D. Note that wi are not even
“functions” let alone the C0(D) condition that we typically stipulate for weight
functions in WRM! However, all the integrals with these weight functions can be
evaluated. This would be further commented later.

We plug (143) into (142) to obtain,

Find uh ∈ Vh such that ∀i ∈ {1, 2, . . . , n}
∫
D

wi(x).Ri(uh(x)) dv = (144)∫
D
δ(x− xi).Ri(uh(x)) dv = Ri(uh(xi)) = 0
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Weighted Residual Method: Collocation Method

According to (144) in collocation method we exactly satisfy the strong form at n
discrete points:

Solution uh = ajφj + φp ∈ Vh satisfies (145)

∀i ∈ {1, 2, . . . , n} Ri(uh(xi)) = LM (uh(xi))− r(xi) = 0

For linear operator LM (cf. (128)):

LM (uh(xi)) = ajLM (φj)(xi) + LM (φp)(xi) (146)
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Weighted Residual Method: Collocation Method

From equations (145) and (146) the linear system Ka = F (cf. (125), (132), and
(133)) takes the form:

Kij =

∫
D

wiLM (φj) dv = LM (φj)(xi) (147a)

Fi =

∫
D

wi(r− LM (φp)) dv = r(xi)− LM (φj)(xi) (147b)
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Optional: Weighted Residual Method: Collocation
Method

Without going to detail, equations for more practical case where natural boundary
conditions are not strongly satisfied are provided. In this case, we solve the usual
discrete system (126)

Find uh ∈ Vh such that ∀w ∈ Wh :

∫
D

w.Ri(uh) dv +

∫
∂Df

wf .Rf (uh) ds = 0

As shown in the figure

For i = 1, . . . ,m, xi ∈ D \ ∂D (interior of D) (148)

For i = m+ 1, . . . , n, xi ∈ ∂Df
wi are set to delta Dirac function on set D for x1, . . . ,xm and on set ∂Df for
xm+1, . . . ,xn.

For i = 1, . . . ,m interior residuals, Ri(xi) will be activated, while for m+ 1, . . . , n
Rf (xi) will be activated. 118 / 388



Optional:Weighted Residual Method: Collocation Method

From the previous discussion the linear system Ka = F (cf. (125), (132), and
(133)) takes the form:

Kij =

{∫
DwiLM (φj) dv = LM (φj)(xi) i ≤ m
−
∫
∂Df

wf
i .Lf (φj) ds = −Lf (φj)(xi) m < i ≤ n

(149a)

Fi =

{∫
Dwi(r− LM (φp)) dv = r(xi)− LM (φj)(xi) i ≤ m∫
∂Df

wf
i .(Lf (φp)− f̄) ds = Lf (φp)(xi)− f̄(xi) m < i ≤ n

(149b)
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Collocation method versus Finite Difference

Both Collocation and Finite Difference methods directly work with the strong form and
boundary conditions.

Collocation method is a particular class of weighted residual method where the solution is
interpolated as uh = ajφj + φp.

Finite Difference does not interpolate the solution with trial function. Rather, it uses
discrete values of the function on often regular grids to approximate differential operators.

Differential operators in Finite Difference method are approximate, where as in collocation
method the solution uh exactly satisfies the strong form at xi.

As an example, let us assume the differential operator LM in Ri includes a Laplacian

operator ∆u = ∂2u
∂x2

1
+ ∂2u
∂x2

2
. The finite difference approximation of Laplacian on a uniform

grid with size h would be,

∆u(x2) =
1

h2
(u(x1) + u(x3) + u(x4) + u(x5)− 4u(x2)) (150)
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Finite Difference Stencils

Source:Bathe’s book, section 3.3.5.
121 / 388



Weighted Residual Method: Galerkin Method

In Galerkin method weight functions are set to be the same as trial functions:

∀i ∈ {1, 2, . . . , n} : wi = φi ⇒ [w] = [φ] (151)

The matrix equation Ka = F components for Galerkin method are obtained from
(132) and (133) by substituting φ for w:

K =

∫
D

[φ].[LM (φ)]T dv −
∫
∂Df

[φ].[Lf (φ)]T ds (152a)

F =

∫
D

[φ].(r− LM (φp)) dv +

∫
∂Df

[φ].(Lf (φp)− f̄) ds (152b)

or alternatively the individual components are given,

Kij =

∫
D
φiLM (φj) dv −

∫
∂Df

φiLf (φj) ds (153a)

Fi =

∫
D
φi(r− LM (φp)) dv +

∫
∂Df

φi(Lf (φp)− f̄) ds (153b)
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Least Square Method

We want to obtain the discrete solution corresponding to the continuum least square method
(51):

Find u ∈ V = {v |v ∈ CM (D, Lu(u) = ū} such that∫
DR

2
i (u) dv +

∫
∂Df
R2
f (u) ds =∫

D(LM (u)− r)2 dv +
∫
∂Df

(̄f − Lf (u))2 ds = 0

By changing u to uh ∈ Vh and minimizing R2 with respect to solution coefficients a instead of
continuum condition R2 = 0, we have

Find uh ∈ Vh such that (154)

∀ũh ∈ Vh : R2(uh) ≤ R2(ũh) where

R2(ũh) =

∫
D
R2
i (ũ

h) dv +

∫
∂Df
R2
f (ũh) ds =

∫
D

(LM (ũh)− r)2 dv +

∫
∂Df

(̄f − Lf (ũh))2 ds

Noting that Vh is an n-dimensional space (122) and uh =
∑n
j=1 ajφj+φp (117a) the minimum

condition can be expressed as,

Find [a] ∈ Rn such that (155)

∀[ã] ∈ Rn : R2([a]) ≤ R2([ã]) where

R2([ã]) = R2(ũh) for ũh = [φ]T[ã] + φp

123 / 388



Least Square Method

The minimum condition for the solution [a](uh = [φ]T[a] + φp) in (155) can be
expressed as,

[a] is minimizer ⇒ ∂R2

∂ai
= 0 ⇒∫

D
2
∂LM (uh)

∂ai
(LM (uh)− r) dv +

∫
∂Df

(−2)
∂Lf (ũh)

∂ai
(̄f − Lf (ũh)) ds = 0

(156)

Noting the linearity of LM and Lf and [a](uh = [φ]T[a] + φp) we observe,

LM (uh) = aiLM (φi) + φp ⇒
∂LM (uh)

∂ai
= LM (φi) (157a)

Lf (uh) = aiLf (φi) + φp ⇒
∂Lf (uh)

∂ai
= Lf (φi) (157b)
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Least Square Method

Equations (156) and (157) yield,

∀φi ∈ Vh :

∫
D
LM (φi) (LM (uh)− r)︸ ︷︷ ︸

Ri

dv +

∫
∂Df

(−Lf (φi)) (̄f − Lf (ũh))︸ ︷︷ ︸
Rf

ds = 0

(158)

In comparison to (126) for the general statement of weighted residual methods we
observe,

∀w ∈ Wh :

∫
D

w.Ri(uh) dv +

∫
∂Df

wf .Rf (uh) ds = 0

Discrete Least Square problem for linear differential operators LM and Lf is
equivalent to a discrete weighted residual statement with the weight functions:

Weight functions corresponding to Least Square Method

w=LM (φ) (159a)

wf=(−Lf (φ)) (159b)
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Least Square Method

According to (159), discrete least square method corresponds to a weighted residual
method with particular weight functions given therein. Accordingly, (132) and (133) take
the form:

K =

∫
D

[LM (φ)].[LM (φ)]T dv +

∫
∂Df

[Lf (φ)].[Lf (φ)]T ds (160a)

F =

∫
D

[LM (φ)].(r− LM (φp)) dv −
∫
∂Df

[Lf (φ)].(Lf (φp)− f̄) ds (160b)

or alternatively the individual components are given,

Kij =

∫
D
LM (φi)LM (φj) dv +

∫
∂Df

Lf (φi)Lf (φj) ds (161a)

Fi =

∫
D
LM (φi)(r− LM (φp)) dv −

∫
∂Df

Lf (φi)(Lf (φp)− f̄) ds (161b)

The matrix K is always symmetric for least square method

Optional: While all three variations of the continuum least square method (50), (51), and
(52) can be used to form the discrete least square method, (52) (PDE residual only) is
often used for presentation purposes. For other cases, care should be taken to ensure that
all integrals have the same physical dimension.
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Discrete Weak Statement

Weak statement is basically a weighted residual statement where the derivative orders on
the solution and weight function has been distributed to obtain a (more) balanced
derivative order between the two.
The advantage of the weak statement is the enlargement of the allowable solution
functions.
As will be shown shortly, this function space enlargement has immense practical
importance in the design of finite element method.
While the approach from balance law → strong form → weak form is quite cumbersome,
we observed that the energy method provides a very direct way to obtain the weak
statement.
According to (74) the continuum weak statement is,

Find u ∈ V such that ∀w ∈ W
∫
D
Lwm(w)Lm(u) dv =

∫
D

w.r dv +

∫
∂Df

w.̄f ds

where Lwm and Lm are differential operators acting on weight and solution functions.
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Discrete Weak Statement

The discrete weak statement is obtained in the same fashion that we derived the discrete
weighted residual statement from continuum statement (as mentioned weak statement
can be considered as a manipulated weighted residual statement).
The same trial function and weight functions spaces (122) and (123) are used for the
discrete statement. The discrete weak form reads as:

Find uh ∈ Vh such that ∀w ∈ Wh

∫
D
Lwm(w)Lm(uh) dv =

∫
D

w.r dv +

∫
∂Df

w.̄f ds

(162)
For linear Lm (Lwm is always linear) by using the expansion uh =

∑n
j=1 ajφj + φp

(117a) and w = [w1,w2, . . . ,wn]T we can derive the following linear system:∫
D
Lwm([w])Lm([φ]T[a] + φp) dv =

∫
D

[w].r dv +

∫
∂Df

[w].̄f ds ⇒ (163){∫
D
Lwm([w])Lm([φ])T dv

}
[a] =

∫
D
{[w].r− Lwm([w]).Lm(φp)} dv +

∫
∂Df

[w].̄f ds
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Discrete Weak Statement

From (163) the matrix equations for Ka = F (125) are (cf. (132) and (133) for
comparison):

K =

∫
D
Lwm([w]).[Lm(φ)]T dv (164a)

F =

∫
D
{[w].r− Lwm([w]).Lm(φp} dv +

∫
∂Df

[w].̄f ds (164b)

or alternatively the individual components are given,

Kij =

∫
D
Lwm(wi).Lm(φj) dv (165a)

Fi =

∫
D
{wi.r− Lwm(wi).Lm(φp} dv +

∫
∂Df

wi .̄f ds (165b)
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Discrete Weak Statement: Self-adjoint property

Self-adjoint operators are prevalent in physics and mathematics. They convey
commutative property of a binary operator. For example, for the weak statement the
self-adjoint property of the problem translates to:

∀w,v ∈ Vh :

∫
D
Lwm(w).Lm(v) dv =

∫
D
Lwm(v).Lm(w) dv (166)

We want to investigate what self-adjointness translates to in discrete setting.
We consider a Galerkin weak statement, that is weight functions are equal to trial
functions: wi = φi (so Wh = Vh). Then from (164) and (165) linear matrix equation
components become,

K =

∫
D
Lwm([φ]).[Lm(φ)]T dv (167a)

F =

∫
D
{[φ].r− Lwm([φ]).Lm(φp} dv +

∫
∂Df

[φ].̄f ds (167b)

or alternatively the individual components are given,

Kij =

∫
D
Lwm(φi).Lm(φj) dv (168a)

Fi =

∫
D
{φi.r− Lwm(φi).Lm(φp} dv +

∫
∂Df

φi .̄f ds (168b)
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Discrete Weak Statement: Self-adjoint property

If the problem is self adjoint from (166) and (168a) we observe:

Kij =

∫
D
Lwm(φi).Lm(φj) dv =

∫
D
Lwm(φj).Lm(φi) dv = Kji ⇒

Self adjoint property implications in discrete setting

For a self-adjoint problem, the discrete matrix K is symmetric

Recalling the matrix K components for Least Square method (161a), how does this
results compare to least square method:

Kij =

∫
D
LM (φi)LM (φj) dv +

∫
∂Df

Lf (φi)Lf (φj) ds for least square method

While least square method always generates symmetric matrices, symmetry only occurs
for self adjoint problems in weak statement with Galerkin weight option

The self adjoint property can also be checked on the weighted residual statement, but it is
easier to check this property in the weak statement because the weight and trial functions
take a similar form.

What are the benefits of a symmetric matrix in discrete setting?
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Example: Self-adjoint problems

Consider the 1D solid bar example shown in the figure. The residuals for this problem are
(essential boundary conditions are strongly satisfied.

Ri(x) = LM (u(x))− r(x) =
d

Aσ(u(x))︷ ︸︸ ︷
F (x)

dx
+ q(x) ⇒ LM (u(x)) =

d

dx

(
EA

du(x)

dx

)
Rf (x) = F̄ − F (x) = F̄ −Aσ(u(x)) = F̄ −AE

du(x)

dx

The weighted residual statement for this problem is,

Find u ∈ V, such that ∀w ∈ W :

∫ L

0
Ri(x) dx+ w(x).(F̄ − F (x))|x=2 = 0
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Example: Self-adjoint problems

We obtain the weak statement for this problem
(by one integration by part) to assess if the
problem is self adjoint or not (this is equation
(73) we directly derived from energy method):

Find u ∈ V = {v ∈ C1([0, L]) | v(0) = ū}, such that,

∀w ∈ W = {v ∈ C1([0, L]) | v(0) = 0}∫ L

0
w′(x)︸ ︷︷ ︸
ε(w(x))

AEu′(x)︸ ︷︷ ︸
F (u(x))=Aσ(u(x))

dx =

∫ L

0
w(x)q(x) dx+ w(L)F̄

That is,

Lwm(w)=w′(x) = ε(w(x)) (169a)

Lm(u)=AEu′(x) = Aσ(u(x)) = F (u(x)) (169b)

It is easy to verify (166):∫
D
Lwm(w).Lm(u) dv =

∫ L

0
w′(x).AEu′(x) dx

=

∫ L

0
u′(x).AEw′(x) dx =

∫
D
Lwm(u).Lm(w) dv
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Example: Self-adjoint problems

So, 1D bar example is self adjoint.

It is easy to verify (168a) by using (169)

Kij =

∫ L

0

dui

dx
.AE

duj

dx
dx =

∫ L

0

duj

dx
.AE

dui

dx
dx = Kji

For elastostatics (linear or nonlinear) the self adjoint property well stemming from a more
general property:

ε(w) : σ(u) = ε(u) : σ(w)

which is equivalent to the 1D case where we had:

ε(w)F (u) =
dw

dx
AE

du

dx
=

du

dx
AE

dw

dx
= ε(u)F (w)
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Example: Self-adjoint problems

As an example of a problem that is not self-adjoint consider the following boundary value
problem for u ∈ D = [0 1]:{

du
dx
− r(x) = 0 Differential equation

u(0) = u(1) = 0 Essential boundary condition
(170)

The weighted residual statement for this problem is,

Find u ∈ V = {v ∈ C1([0, 1]) | v(0) = v(1) = 0}, such that,

∀w ∈ W = {v ∈ C0([0, 1]) | v(0) = v(1) = 0}∫ 1

0
w(x).(

du(x)

dx
− r(x))︸ ︷︷ ︸

Ri(x)

dx = 0

For the problem to be self adjoint the bilinear form (a linear function in each of its
arguments):

a(u,w) =

∫ 1

0
w(x).

du(x)

dx
dx

should be commutative. However, It is clear that a(u,w) 6= a(w, u) (for example consider
w(x) = 1, u(x) = x).
Optional Self adjoint property not only has many computational advantages (half the
storage and faster solution algorithm for symmetric matrices) but also has several physical
interpretations and facilitates many existence and uniqueness proofs.
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Energy Method, approach A, Ritz method

We want to obtain the discrete solution corresponding to the continuum energy method (80):

Find u ∈ V = {v |v ∈ Cm(D), Lu(u) = ū} such that

∀ũ ∈ V : Π(u) ≤ Π(ũ) or alternatively

∀ δu ∈ V0 = {v |v ∈ Cm(D, Lu(u) = 0} : Π(u) ≤ Π(u + δu)

(171)

There are two paths to discretize the energy method.
1 Ritz Method: Direct discretization of the continuum energy minimization principle: By

changing u to uh ∈ Vh and minimizing Π with respect to solution coefficients a instead
of continuum condition Π(u) ≤ Π(ũ) for u, ũ ∈ V (infinite dimensional space) we obtain,

Find uh ∈ Vh such that (172)

∀ũh ∈ Vh : Π(uh) ≤ Π(u)

Noting that Vh is an n-dimensional space (122) and uh =
∑n
j=1 ajφj + φp (117a) the

minimum condition can be expressed as,

Find [a] ∈ Rn such that (173)

∀[ã] ∈ Rn : Π([a]) ≤ Π([ã]) where

Π([ã]) = Π(ũh) for ũh = [φ]T[ã] + φp
Necessary optimality condition ∇Π([a]) = 0 (gradient = 0) for Π at a⇒:

∇Π(a) = 0 ⇒
∂Π

∂ai
(a) = 0 Ritz method minimizes Π of the discrete system (174)
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Energy Method, approach B, weak formulation

2 Weak method: Minimizing the continuum problem then discretizing: In the second
approach we proceed by first minimizing the continuum statement. From (96)

Π = Π(y, y′, . . . , y(n)) ⇒ δΠ =
∂Π

∂y
δy +

∂Π

∂y′
δy′ + · · ·+

∂nΠ

∂y(n)n
δy(n). (175)

the continuum energy method would directly result in a weak statement of the form:

Find u ∈ V : ∀w ∈ V0∫
D
Lwm(w)Lm(u) dv =

∫
D

w.r dv +

∫
∂Df

w.̄f ds

where w = δu stands for the variation of the solution u and V,V0 are given in (171).
We already discussed the solution of a discrete weak problem (for example refer to (162)
and (163)). The linear system matrix K and force vectors F were given in (164):

K =

∫
D
Lwm([w]).[Lm(φ)]T dv (176)

F =

∫
D
{[w].r− Lwm([w]).Lm(φp} dv +

∫
∂Df

[w].̄f ds
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Comparison of two approaches for discretizing the energy
method

In the second approach (weak form obtained from energy functional) as can be seen in
(176), we have complete freedom to choose any set of weight functions (for example
subdomain, collocation, or Galerkin options).

While in the first approach (Ritz method) we do not directly deal with weight functions,
generally it corresponds to the weak system in (175) with Galerkin weight functions, that
is w = φ and (176) simplifies to

K =

∫
D
Lwm([φ]).[Lm(φ)]T dv

F =

∫
D
{[φ].r− Lwm([φ]).Lm(φp} dv +

∫
∂Df

[φ].̄f ds

This is very similar to least square method which also did not directly include weight
functions but we concluded that for linear differential operators LM and Lf it

corresponded to weight functions of the form w = LM (φ) and wf = −Lf (φ).

Summary

Basically in the first approach (Ritz method) we first discretize then optimize while in the
second approach (weak statement) we first optimize then discretize. The commutation of these
operations are shown in the next slide.
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Relation between Energy Method and Weak Statement
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