INTERFACIAL DELAYED-DAMAGE MODEL FOR
DYNAMIC FRACTURE AND FRAGMENTATION

Reza Abedi¹, Kartik Marwah², Ian McNamara², Robert B. Haber∗², and
Olivier Allix³

¹ Dept. of Mechanical, Aerospace & Biomedical Engineering, University of Tennessee Space
Institute, 411 B. H. Goethert Parkway, MS 21, Tullahoma, TN, 37388, USA, rabedi@utk.edu
² Dept. of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, 1206
West Green St., Urbana, IL 61801 USA, {marwah2,imcnama2,r-haber}@illinois.edu
³ École Normale Supérieure de Cachan, L.M.T. Cachan, 61 Avenue du Président Wilson,
94235 CACHAN Cedex, allix@lmt.ens-cachan.fr

Key words: Dynamic fracture, damage, spacetime, discontinuous Galerkin, fragmentation.

We describe an interfacial damage model for rate-dependent fracture processes and its
application to fragmentation problems. This sharp-interface model is distinct from bulk-
damage representations and is an alternative to cohesive models with traction-separation
relations. We use a space-time damage field, D, to describe intermediate conditions
between the intact and fully debonded states on fracture surfaces. A delayed-damage
relation [1] governs the evolution of D and includes a relaxation time scale that can capture
rate-dependent fracture response. We use D to interpolate between Riemann solutions
for intact and fully debonded interfaces and weakly enforce the interpolated solutions in a
spacetime discontinuous Galerkin method. This preserves the characteristic structure of
the hyperbolic elastodynamic system and handles crack closure, with distinct response for
stick and slip conditions [2]. Our model suffers no artificial compliance in the undamaged
state at any level of grid refinement and avoids the non-smooth response that might
complicate numerical implementations of extrinsic cohesive models. We discuss parameter
selection for realistic fracture response and present applications to fragmentation/spalling.

REFERENCES
