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Partial Differential Equations (PDEs)
classification groups

PDEs can be classified from different perspectives:
1. Order of PDE: The highest order of PDE

U # Uy (second order)

@@(ﬁrst order)
up = Wil +,sinx (third order)

® wy + Upry + uu, = 0 (KdV Eqn., third order)

o uf, + uﬁ = ¢* (Eikonal Eqn. of Geometric Optics, first order)

2. Number of variables: The number of independent variables for all
the involved functions:

U = Uy (two variables:
2T |
U = U, + U+ Sl (three variables: r, 0, and 1)

3. Homogeneity: If the source term (right hand side) of the equation is zero|the PDE

is called homogeneous. The same concept applies to initial (IC) and boundary (BC)
conditions of a PDE (RHS of the IC/BC differential operator is zero) —

e u; + uy = 0 1s homogeneous
) 2 ¢ A //i A \(QQ\,/J
o ity iy =Z° > + 4? is inhomogeneous S

4. Type of coefficient:
» Constant coefficient (function & its derivative terms have constant coefficients)
e
(\U\/\'\M (’\—_—\Qﬂ 3’ u () u - -)“l -0

L)u dy

« Variable coefficient

» Coefficients onl Q:unctiko\iw of independent variables (e.qg. x, t)
2 S UNNe QN '-‘l.l Gl . ay

» Coefficients function of independent variables AND the function (e.g. x, t, u)

()zu *j u
Source: [Farlow, 2012] J
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5. Hyperbolic / parabolic / elliptic PDEs:
- The classification becomes more clear in the next few slides. Below is the brief
description of some of their characteristics and sample applications.

Hyperbolic PDEs correspond to the propagation of waves and there is a
finite speed of propagation of waves. They tend to preserve or generate
discontinuities (in the absence of damping). Hyperbolic PDEs are often
transient although some steady-state limits of transient PDEs can be
hyperbolic as well (e.g. steady advection problems).

Examples: Elastodynamics, Transient electromagnetics; Acoustic equation.
Parabolic PDEs: Unlike hyperbolic PDEs the speed of propagation of
information is infinite for parabolic PDEs. They also tend to dissipate sharp
solution features and have a “diffusive” behavior. Many transient diffusion
problems are modeled (or idealized) by parabolic PDEs. Some examples are
Examples: Fourier heat equation; Viscous flow (Navier-Stokes equations)
Elliptic PDEs: Elliptic problems are characterized by the global coupling of
the solution. They often correspond to steady-state limit of hyperbolic and
parabolic PDEs.

Source: [Farlow, 2012] 10

1. Elliptic equations:

e Sample:

e The entire domain is physically coupled and often numerical methods involve a global solve.

e They are often steady state limit of parabolic/hyperbolic systems.

2. Parabolic equations(dynamic):
e e S e “NOEL

Vio+pb=0 Elastostatics equation
" . . - A2
f.._\u = X2  u;; (Laplacian), Poisson equation |
Z

V.o + pb aD;

t specified
DRi=t-t=t-on

u specified

e Sample: DTy = q strongly xy
d7 - = .
C = KAT = Q. (constant x), Parabolic(Fickian) heat equation
e Imply an infinite speed of propagation of information.
e The entire spatial domain is coupled.
e Numerical methods may involve the solution of the global spatial domain or local domains.
e The diffusive operator smoothens the solution.
- S~ -
[9) —
"‘ (" CA'."‘-!
T(z.t = 0) = 6(z) G(z,t) = \ ——exp | ——— ) Green'’s function
2 Ao ) fet AL | Akt 4kt
1
E——
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3. Hyperbolic equations(dynamic):
e Sample:

d*u y ’ :
p——V.c=pb Elastostatics equation

e There is a maximum speed for the propagation of waves (information).

Due to finiteness of the wave speed the spatial domain is NOT globally coupled.

Numerical methods may employ the locality of hyperbolic systems to devise local solution schemes.
e Unlike parabolic equations, hyperbolic equations preserve discontinuities or even generate them 25
(nonlinear equations). X . | l—«
: Burger’s equation (nonlinear) «, + (;ul> =0 LQJ\ (A U\ /X
jeveiray =l g[;g ¢ &

t=0, ——

smooth i — i

solution

eap e
shock has ‘.
formed =

6. Linearity:
- The PDE is linear if the dependent variable and all its derivatives appear linearly in
the PDE. The nonlinear PDEs are classified into several groups as their solution

characteristics can be quite distinct: L]W
- —%/
Notations: o o
*  Multi-index a = (f)-l-. Ca ,(l,,.) A QV\\\\O‘M C/((/M . d\ e
order of the multi-index is |a| = oy + ... + a,

* Multi-index partial derivative g“\w - nonliss {

d'%u
__ _ 901 | 50
@‘ P agan = Om O
1 n
o 32
example- b= (1,2) => D%u = ()r();ff = H._ry‘y

« Collection of all partial derivatives of order k: DFu = {D% : |a| =k}

example: If u = u(ry..... Ty), then D'u={u,, : i=1,..., n}
13

Source: [Levandosky, 2002]
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General form of PDE: " M
F(Z,u, Qll. Du. ..., Dk-u) =0 X P)jvﬁ
Xy X< 2 \A%/U\yvv\kvj -

Pt T I

A. Linear: If u and its derivatives appear in a linear fashion. That is F can be

written as,
Z ao(T) D = f(T).
n\q\.‘\/ﬁ-’% )
— SUMm v AN ee— ;«’ B W S

— %@d\g o Cf\\ﬂ —?U\AO\J\/\ Mp 78

Examples:
oy )ﬂu; =01s ]11Jll|u"‘(‘11('u11~' linear

O/lu“ —.—ﬂw = 0 is homogeneous linear.

o] u\ Kuw =z + 3? is inhomogeneous linear.

o . .
\QQ@ &w o,\ Ut —:—@u; = 0 15 homogeneous linear.

S {\A Q&S\/\é

'i”r —E—ju”r wl, = 0 1s not linear.

:fﬁ — 1 is not linear.
ource: [Levandosky, 2002]
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B. Semi-linear: is i man‘

be written i linear fashion of functions of @That is, such coefficients are
only functions of independent coordinate x. The PDE can be written as,
Z ao(T)Du + ag(D* 'u, D*2u, ..., Du,u,7) = 0.

a|=k

Q\Qx)jﬁli\ (AN} —k\Q(X)U},U\)M%:Q&N‘j/M) CA(K\/\

PN s d J T o o

m - oth by
@ oo T o cort
&U\ ) MU A LX) vy v% - <u,3,m Ww%(?‘
\M\%\r\m PRIV [y onr I i
\\mﬂ/g\wmw o By uS ;QM ﬁ_éﬁzi)

o foymn St To—

e u; + xuy = 0 is linear.
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AR Upy + Uy, Fe U° s semilinear.
SO KRR U2

e u; +xu, =0 is linear.
’\‘

us Huwd = 0 quasilinear butnot semilinear.

\Y

A

C. Quasi-linear: is a nonlinear PDE, that is not semilinear and its highest
derivatives can be written as linear function of functions of x and lower
order derivatives of u. That is, it can be written as,

That is the coefficients of highest order terms depend on
T u D* 1y, but not on D*u.

Example
(z, z; ‘ b(x,y, u. (z,y.u) Is quasilinear
semilinear if a(x, y), b(x,y)

linear if a(x, y), b(x, y) and ¢ = u d(x, y)

L n = 0 1s quasilinear.

1 1s not quasilinear.

D. Fully-nonlinear: If it's nonlinear and cannot be written in quasi-linear,
semi-linear forms.

d_u . (au')g_o
63’.‘1 85{.‘2 N

2 / o :
Ugy Uyy — (ury) =V Monge-Ampere equation

o u’+ u"j = ¢? (Eikonal Eqn. of Geometric Optics, first order)

For a list of well-known nonlinear (semi-linear, quasi-linear, and fully nonlinear) PDEs refer to

(https://en.wikipedia.org/wiki/List_of _nonlinear_partial_differential_equations)
17

Source: [Levandosky, 2002]
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Linearity Linear Nonlinear ————> o« Semi-linear
* Quasi-linear
Order 1 2 |3flafs b - + Fully-nonlinear
Kinds of coefficients _
(linear equations) Constant Varisble
Homogeneit:
(linear -nu-tvlom) Homogeneous Nonhomogeneous
Number of varisbles 1 2 |34 5 "
Basic type . . lioti
aoer equitionsl Hyperbolic Parabolic Elliptic

FIGURE 11 Classification diagram for partial differential equations.

Source: [Farlow, 2012] 18

Concept of characteristics for hyperbolic PDEs:

» We are interested in solving the 15t order linear PDE in two variables:

PDE  a(x,f)u, + b(x,0)u, = c(x,)u =0 —o<y<w

I<t<w
IC  ux,0) = ¢(x) —0 < x<®

du

QLD Vs 2Oy
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SRS

DC Page 7



» The ODEs are solved along characteristic where variable s changes

\ \ A sy ch
s varies along the Characteristics
characteristics (Ranges (Energy propagates along these line|
from zero 1o infinity

starting at the initial

T 18/a constar
glong each
chiaracteristic

s = Constant
on this line
x

3 IR R

Wy U s PO dctngrt
_ %L% o\<xm 3+ \% B(X]U of lp e o A )M e %;ym

X ey | il g sedn Wb e

o 0 g gah
DY ANSIEN
55

» Consider the following PDE with constant coefficients:

PDE L u, +|u, +2u=0 -x<x<= O<i<w
IC u(x,0) = sin x —x < x <>

2 :
| < 4 O | X
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* So the solution to

PDE u, +
IC u(x,0) = sin x

u(x,t) = sin (x — t)e - 2t
L =Rl

—_—e <y <X

N N

Which is a sine wave moving with speed 1 and damping in time
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