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If we do this integral (using 5b) we get:

Hyperbolicity condition for a system of first order PDEs
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The characteristic values are NOT real, so the system is not hyperbolic! L qu L f\ = [\“L

Condition for hyperbolicity of a system of first order PDEs: (} ]/\c\ \/‘ W o L"v
1. Ais diagonalizable (means that it has n linearly independent eigenvectors for nxn A). Y/ N C C&( oL DV\Q‘ ; \l
2. Eigenvalues are real. A\ U SN

\ MX (QO& QR %M | CWMV\{— &m& \/? (j\li\LL\
@kcww\d W

Reminder: To solver the previous system of 15t order PDEs we should
have been able to obtain matrix L for diagonalizing A in terms of A:

]I ]= l|'1r

. A0 0 0
LA=AL wv=|r|=|y - | A=diagh.--.\)=|. . . |
+ To obtain L (diagonalizing A) we should have
+ There are n linearly independent (left) eigenvectors
+ The corresponding eigenvalues %, are real.
« NOTE:
LA = AL L is left eigenvector matrix =
A =L"'AL A is diagonalizable &
AR = RA R=L"!

is right eigenvector matrix
Hyperbolicity condition requires that we can find n characteristic values for the
n-tuple g where information propagates along characteristics.
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e For an n x n matrix A we obtain eigenvalues from the n'" characteristic
polynomial,

det(A—AI)=0 (14)
e This equation ALWAYS has n complex roots (which clearly some of all can
be real). If a root A is repeated k times we call k, the algebraic multipicity of
that root.
e Given that some roots may be repeated, we list roots in ascending order,

A1 < A< s < A, n(A) :=m <n

where m is the number of distinct roots of A shown by n(A). Note that
some roots may be repeated multiple times.

e The algebraic multipicity of root number k A is shown by ni!(A) which in
short is shown by nj}.

Geometric and algebraic multiplicity i

e Since ([14) has n roots, even if ;. < n (i.e., some roots are repeated) we always
have,

m
E nd=n ifm=n = af=1forallk<n
k=1
e The Geometric multipicity of Ag n{ is the geometric dimension (i.e., number
of linearly independent eigenvectors ll'A’, of Ax). lli_ form a basis for the vector
space spanned by eigenvectors of Ag.
Note that we can have different members in a basis of a vector space but the

dimension of the vector space is independent on which basis is used.

e We have the following observations and definitions,

nf = geom. multipicity Az dim(eigenspace of A\x) = dim{u |Au = A\zu}.
Can be smaller if nj! > 1.

n =1ifnf =1 Each distinct A has ONE eigenvector direction.
m
n(A) = z ng sum of the dimensions of eigenspaces.
1

n®(A) <n*(A)=m
nG(A) =nifn*(A)=n

- Two important classes of diagonalizable matrices:
o If all eigenvalues are distinct (n distinct eigenvalues -> n distinct eigenvectors): To check hyperbolicity, we also need to make sure
eigenvalues are real (pertained to hyperbolicity of gDot + A gq,x = S)
o Symmetric (Hermitian if complex) are always diagonalizable even if they have repeated eigenvalues. In fact, such matrices ALWAYs have
real eigenvalues with orthogonal eigenvectors. (so if A is symmetric, the systems of equations already satisfies all hyperbolicity conditions
and the PDE is hyperbolic)

Strong vs. weak hyperbolic PDEs: If all eigenvalues are distinct the PDE is strongly hyperbolic, otherwise weakly.

Examples: Elastodynamics in 1D as we saw above is strongly hyperbolic. N {Wﬂs
But elastodynamic in 3D is weakly hyperbolic T ‘ M

Oas ¢ & 0 &
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e Hyperbolicity of q; + A(q, z,t)q . = s(q,x,t) for a given point (z*,1*).
— A is diagonalizable iff n¢(A) = n.
— System is hyperbolic if A is diagonalizable (n“(A) = n) AND ALL
eigenvalues are real.
— Hyperbolicity is STRONG if n*(A) = n (all characteristic values are
distinct).
— Hyperbolicity is WEAK if n*(A) < n (repeated characteristic values).

— If system is quasilinear all q must be considered for A = A(q,z*.t*) in
definitions above.

2.9 Hyperbolicity of Linear Systems (Also for semi-linear case)
Definition 2.1. A linear svstem of the form

G+ Agy =0

is called hyperbolic if the m x m matrix A is diagonalizable with real eigenvalues.

We denote the eigenvalues by

}\I 5)\2 E 5;\”‘
The matrix is diagonalizable if there is a complete set of eigenvectors, i.e.. if there are
nonzero vectors r'. %, ..., r™ € R™ such that
Ar?'=xPrP forp =1;2;.0:5 m, (2.70)

and these vectors are linearly independent. In this case the matrix

LA U SWW&
R =[r'|?|---|r™], W”‘““\'\f fox
Source: [LeVeque, 2002, 2.9] R 'AR=A and A= RAR™', %5 N

Quasi-linear system gi(x. 1)+ f(g(x. 1)y =0. ‘ oA Q@Q}A -0

D gr +A(q,x,1)gx=0  where  A(q.r.t) =Vqf(q.x.t) %// 3 9 0
] TR

is said to be hyperbolic at a point (¢, x. 1) if the matrix A(q, x. 1) satisfies the hyperbolicity (%, 4

condition (diagonalizable with real eigenvalues) at this point. )

The nonlinear conservation law () is hvperbolic if the Jacobian matrix f’(q) appear-
ing in the quasilinear form ) satisfies the hyperbolicity condition for each physically
relevant value of ¢.
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Quasi-linear system @) ¢,(x, 1) + flg(x, 1) =0. |:> ‘
[:| g+ A(g,x,1)gx =0 where  A(q.r.t) = Vqf(q.x.t)

is said to be iyperbolic at a point (¢, x, t) if the matrix A(q, x. 1) satisfies the hyperbolicity
condition (diagonalizable with real eigenvalues) at this point.
The nonlinear conservation law (O) is hyperbolic if the Jacobian matrix f’(g) appear-

ing in the quasilinear form (D ) satisfies the hyperbolicity condition for each physically
relevant value of ¢.

Source: [LeVeque, 2002, 2.11]
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Systems of 15t order PDEs
More than 2 independent parameters (2D, 3D)

e Consider the system, - @
\

q¢+A'q, + A’qe, + A’qq, = s(q, X, 1)

where x = (1, x9, x3).
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where X = (x1,T9,3).

e In general we cannot solve this system by diagonalizing the system and solving
ODE:s as a system with 2 independent parameters

Idea look at (a) for wave propagation along the direction n and see if the PDE in x_n (x along n) and t is

q¢+Alqe, = s(q,z1,1) <

however, even in 2D & 3D if the IC, BC are 1D and the form of matrices
accommodates the direction of solution implied by IC and BC we can basically

solve a 1D problem.

hyperbolic

» The hyperbolicity is investigated by seeking planar waves in dire
(r1,m2,n3):

Jr

| q=U/f(nx—ct

WL

where
U=[Uy U, --- U,,].r wave shape (mode
n = (ny,n9,n3g) wave direction

c wave speed

f a scalar function (U) turns f into the vector form g

By plugging in we obtain,

I(,A” —c)U=0, where A":= III.AI — Il~_7.‘-\l2 <+ Il:;.‘\ﬂ

That is we are solving an eigenvalue problem for A" exactly similar to 1D

case.

Hyperbolicity condition:

System (12) admits propagating planar waves for arbitrary directions n
A" is diagonalizable for arbitrary directions n

=

Clearly, the same procedure works for 2D and higher dimensions as well.

For more discussion refer to [LeVeque, 2002, section 18] (particularly 18.5).
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