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If we do this integral (using 5b) we get:

Hyperbolicity condition for a system of first order PDEs:
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The characteristic values are NOT real, so the system is not hyperbolic!

1. A is diagonalizable (means that it has n linearly independent eigenvectors for nxn A).
2. Eigenvalues are real.

Condition for hyperbolicity of a system of first order PDEs:
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○ If all eigenvalues are distinct (n distinct eigenvalues -> n distinct eigenvectors): To check hyperbolicity, we also need to make sure 
eigenvalues are real (pertained to hyperbolicity of qDot + A q,x = S)

○ Symmetric (Hermitian if complex) are always diagonalizable even if they have repeated eigenvalues. In fact, such matrices ALWAYs have 
real eigenvalues with orthogonal eigenvectors. (so if A is symmetric, the systems of equations already satisfies all hyperbolicity conditions 
and the PDE is hyperbolic)

- Two important classes of diagonalizable matrices:

Strong vs. weak hyperbolic PDEs: If all eigenvalues are distinct the PDE is strongly hyperbolic, otherwise weakly.

Examples: Elastodynamics in 1D as we saw above is strongly hyperbolic. 
But elastodynamic in 3D is weakly hyperbolic
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Idea look at (a) for wave propagation along the direction n and see if the PDE in x_n (x along n) and t is 
hyperbolic
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