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source term and conserved quantity act on dv

For a general conservation law let: N o
Iy .w

@ f;: conserved quantity = temporal flux

@ f,: total outward spatial flux

@ r: source term
dF, = fods = (f..n) ds
then the balance law for dynamics reads:

Iy

\j

VwCD/\Vt:/rdv— fx.ds:/rdv—/ (fz.n)ds:i/ftdv (13)
w dw w dw dt w

~

e Application of divergence theorem on the flux term yields,

/ frlldSZ/vfrdl'
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e By taking -7 inside the integral in the balance law we have,

of,
‘v’;;C’D/ LV —rbdv=0
Jo, L Ot J 76

e Since w C D is arbitrary, by using the localization theorem we obtain the
strong form of the problem,

of,
T; +Vfy—r=0 thatisin3D fi;+fi1+fho+f33=1r
¢

where fi, fa, f3 are the components of the spatial flux f, = [fi. fo, f3].

e Quasilinear systems: If f; or f, depend on the unknown vector u in addition
of X and ¢ the system of PDE is nonlinear We can write it in the form,

fic+fi1+Ho+f33=1r = A+ Ajug +Asus+ Asgus =0 where

19 ;
Ag(u,x,t) :=Vufy thatis (A¢);; = % similarly
J

Ai(u,x,t) = Vuf thatis (A7), = d(.g?i i1<3
J

If Ay and A; (7 < 3) do not depend on u the system is linear or semi-linear;
otherwise it is quasi-linear.
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e If further u is chosen to be the temporal flux f; is the primary field u then
A,; =T and we have,

u+fii+fo+fiz=r = u;+Aju;+ Asus+ Aszuz =0

e For a scalar system clearly A; are scalar.
eInlDfh=f3=0(Ax=A3=0).

e Consider a general scalar quasilinear conservation law,

ue + fra(u) + fo2(u) + faz(u) =7 &
wy + g1(u,z, t)ug + go(w, z, t)us + g3(u,z, t)usz =0

which for 1D it simply is
ug+ fo(u)=r & uyg+g(u,z,t)uy, =0

e If g(u,x,t) depends on u the solution behavior for u can be very different from
linear/semilinear first order systems and may exhibit shocks and expansion
waves.

78

Quasi-linear first order equations and why shocks are formed:

Motivation: Shock and expansion waves:

v_ > v, = shock V_ < v, = expansion
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Example: Burger's equation (continued)
¢ expnnsion/%
u u _ . u=A s . u=B
a-ﬁ-ua =0, —x<r<ox,t>0 / ;'
I i
0 A, <0 ,f ,F; If.*
uz,0) = B, r=>0. f I.n" /
.l“ll ,.'III / )
upg(x <0,t)=A=0 0 ug(x>0,)=B>A X ’
S\W@\g Wi
shock line ( i
\/ot L

X

\WVQM&
uglx<0.)=A>0 0 ug(x>0,)=B<A

X

up(x <0,t)=A>0 0 ug(x>0,)=B<A
Figure IV.6 If the signal travels slower at the rear than at the front (4 < B), the characteristic

network is under-determined. Conversely, if the signal travels faster at the rear than in front
(A > B), the characteristic network is over determined: the tentative network that displays
80

intersecting characteristics, has to be modified to show a discontinuity line (curve).

Source: [Loret, 2008]
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* Quasi-linear PDE (q(u)) (A/\@&
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* We define the jump operator
[1=0)+—()-
whara + and _ rafar tn tha twn cidae far tha ilimn
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[1=0)+—()-

where + and - refer to the two sides for the jump.

* If X4(t) is the position of the jump manifold in time, its equation is given by A - (A +

. - +
dXs(t) _[dl _ a4 —a- 9 9
dt [u]  wy—u_
This is called the jump or Rankine-Hugoniot condition.

Source: [Loret, 2008] ?
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Does it
dX (f T
Uy — U

Jumps cannot propagate with arbitrary speed and we cannot have arbitrary jumps in fx and ft. Their jumps are related and dete rmines the
speed of jump

- For semi-linear sys. Of convs law the speeds of discontinuities are the wave speeds.

Example:
&
Shock formed as "} by
characteristics collide S
<
\ =Behind the shock waveé\?s{ock wave
(o// '/ Ahead of the shock wave
Solution is 1/2) te1/2
constant along
characteristics, . A
1
t==(x-xg) "
g e ==8" -
—& / - X
Xq 0 e 1
S=f(uk)‘f(“L)=0—l=1
Up — U, 0 -1 Flux = u?

Source: [Farlow, 2012, lesson 28]

DC Page 6



Introduction and Motivation 12

1.5.1 Introduction and Motivation

o In many instances we need to find the flux on an extruded facet in B t
space time. For example, in Finite Volume (FV) method: |

A
Rarefaction 2 : Contact

Shock
X = Mt

PDE from the balance law is q(z,t) + f . (g(x.1)) = 0.
We need to calculate spatial flux f(g(x,t)) average

which for the houndary between cells m—1 and m is represented

/ approximated by numerical flux F_, ..

e We solve a local problem with initial conditions Q7 _,, Q7 to find
the value for solution at position in the figure. This is called a
Riemann solution. Sometimes, we opt to choose substitutes or ap- n n
proximations for Riemann solution as it solution is to expensive or ( ) I .

) — Lm—1/2 m
not available. m—1 / m

e The Riemann solution set-up in the figure is for a the Euler's equation,

where for constant states at the left and right we
obtain different regions in spacetime with distinct solutions.

1. PDE type classification and analytical methods: 1.5 Riemann solutions: linear and nonlinear hyperbolic PDES

e The red dot is the position where we position we may seek the solution for a FV scheme, Discontinnous Galerkin (DG), ete.

(to represent the average of flux on the cell boundary).
e For quasilinear systems we may have complex solutions with rarefaction waves and shocks.
e This explains why we may use approximate Riemann solutions.
e Riemann solution may be required for nonvertical directions as well.

Vertical position: FV method & majority of DG methods = Nonvertical position: Unstructured spacetime grids

Q!
ths1—|
t | F,“_| 2 "'.,'i_|.-.
AT ST :
ty 1 1 1 1
Qi Q! Qi
T
1. PDE type classification and analytical methods: 1.5 Riemann solutions: linear and nonlinear hyperbolic PDES
Approach 1: Using characteristic values (linear PDEs) 14

1.5.2  Approach 1: Using characteristic values (linear PDEs)
e Characteristic values w = Lq are constant (or solved as ODEs) along characteristic directions
e Primary field q has n components

q
q2
q= A

q'x
e Transfer to characteristic variables and directions For the system on q we transfer to characteristics by,
For q+Aq.=0 LA =AL, for A=diag(e;, --,cp)

W

e Eigenvalues (wave speeds) are ¢; < ¢ < --- < ¢,

1. PDE type classification and analytical methods: 1.5 Riemann solutions: linear and nonlinear hyperbolic PDES
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Approach 1: Using characteristic values (linear PDESs) 15

e Initial conditions are
q' <0
q(r,0) =qp = q z>0 = Ww(zT,0) =wo =

e Characteristic values w = l.(] are constant along characteristic di-
recti % P is

constant along the wave moving with speed ¢
Qt g'”

! we have,

e Thus, for sample segments S', S

e Transfer back to primary variables and fluxes is by using L: q5 = L™ 1wS
1. PDE type classification and analytical methods: 1.5 Riemann solutions: linear and nonlinear hyperbolic PDES
Approach 2: Using Jump shapes from right cigenvectors (linear PDEs) 16

1.5.3  Approach 2: Using Jump shapes determined by right eigenvectors \,\fT Q)\
) ~—

e Again, consider the system, . - \ Q %VfZB
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For c =0, righte e the shapes of the dis discontinuity line and corresponding eigenvalues are the speed of dis
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