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Exact solution for uy +u, =0 Finite Difference solution (FTFS)

t“ ey =(1+4
il t) =1 Instabiljty! Nonconvergents
) solution!
v, (1 +
l'_, —3
2<0 u(a, t) = 0 .lf 230 ¥ v) =0

u(e, t=0)=wup(x) =1 yaz.t =0) =up(xz) =0 U()(l’)

For any value of k the solution blows up! This is an unconditionally unstable method!

2.1.8.3 Unconditional instability- \

9"
e For a given Iil@\"d’:‘ have,
(‘6\

vir=-ht=T)= l'};

That is solution for this point approaches infinity in time. However; fiow the correct solution remains bounded (u = 1)

at this point!
e It is obvious that this problem hold for ANY time step k.
e We call this scheme UNCONDITIONALY UNSTABLE.

e On may be tempted to use very small time steps k — 0 to control the error, hoping that one may circumvent the problem.
By recalling limy,_,, (1 + k)¥ = e* we have,
—_———
v(r=-ht= T);m k=0 (33a)

That is, even in the limit of very short time steps solution blows up. In fact, the smaller the spatial grid size h, the faster the
solution blows up v(=h,T) = e!

e This occurs for FTFS FD because the waves move to the right but FD scheme goes from the right to the left.

2.1.8.4 FD2: Conditionally stable explicit method

e We use the forward-time, backward-space (FTBS) from (27b)) to advance the solution in time,

n
m—

n+1 n no_
Um  —Um + :f‘m v

1 _ P
- ml-0 > (35a)

vt = (1 — k)ul 4+ kvl where as before (recall . ) (35h)
k

k=al, )\:E

!
Recall that k is the normalized time step. \J 2 @
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2.1.8.5 FD2: FTBS steps of solution

e Steps of the solution:
1. As before IC sets up values for time step 0

vy =1 r',’ = ] I‘-(_: =1 1': =0 r(,' =0 =0 =0

2. Again, similar to FTFS scheme, for time step 1, we enforce the BC on the left side,
/\ . l',],: 1 (l}(' v(z.t=0) = 1)

(] (] 0 )
=1 =1 =1 =0 v{=0 v§=0 =0

0 vi=0 v=0

o ® & ®
(1] 0 (

w=1 v/=1 v3=1 v3=0 v§=0 v5=0 vg=0

Any ‘k That would result in exact solution in all nodes
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o We observe that the value o7, grows with the factor k. That is, v, , = k".
e If k| > 1 we observe that this value blows up and the method becomes unstable.

e We call this scheme conditionally stable: It is stable for || < 1

e k=1 matches the maximum possible limit for explicit methods for hyperbolic problems. This corresponds to CFL number
= 1 (discussed later). N
e We will observe that for FD formulas of the ty bility is assured if o] +|3] < 1. (>Z $
o P < ¢}
e For FTBS scheme we had an@m 1\ kyp = stability requires |1 — k| + k| < 1=k < 1. .

o Similarly for FD formulas of the type v*! = avl + vl ., stability ag D\ 9 ©

o For FTFS scheme we had o7 =((1 + k)vl}, + (=kw7, | = stability requires |1 + I.I + |L| < 1. This condition does not hold
for any k& meaning that FTFS is unconditionallyxt IM( (for a > 0).
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This scheme is unconditionally unstable for all a!
Von Neumann analysis (later in this course) proves this.

":::I - % (vh—y + "::.—l) Urnst = U1 -
= T +a h =0 Lax-Friedrichs
prtl _ gn—1 no o _n
m B m g Ymt = m=1 _ 0 leapfrog (27¢)
2k 2h

\N\(\_{/ &Sg‘@ﬂ\ﬁ\m

g & i ] 3 5 + + ¥ i

Figure L&. A solution of the Lav-Friedrichs wheme, & = 08 Figure L8, A soluvion computed witk leapfrog scheme, & = 0.8

2.1.8.8  Development of instabilities from nonsmooth features

o If an unstable time stable is used k = A = 1.6 the solution will be unstable.

e If nonsmooth features exist in the solution (IC, BC, source term) instabilities often initiate from those locations (if the method
is unstable):

Figure 1.7. A soluwifon of the Lax-Friedrichs scheme, 3 = 1.6,
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2.1.9 Examples for implicit methods

e We consider the same advection problem (lb)') u, +a(x,t)u, =0, a(xr,t) = a > 0, with IC (131)) ug(r) =1 — H(x), and BC

u(—3,t) = 1 and the 7 point grid with h = 1 for the domain = € [-3, 3].

@ ® @ B @ @® 9
vg =1 l‘ll' =1 1’.‘_,' =1 1'{‘ =0 1'(" =0 1': =0 l:: =0

n+\

e The stencil for backward-time backward space (BTBS) scheme is (29a)),

1
- v

h

e Stages of solutions:

1. IC is set as before for FTFS & FTBS.
2. Boundary condition on the left boundary is set as v} = 1.

3. The equations for points 1 to 6 based on (36a) are,

)1
1
) i
‘2 =Ry
(1+L)l; kv =3 ' o y
= 3 ‘ = Av' :=v ' +b", where
(1+ k) —kvl =0}
(14 k) —kv} =2 6 8
d I — 0 I
(14+k)vg —kvy =vg ébf\\&N\Q\H\/\Q @\
op w(0,1,,) Q fT) 0 0 0 0 0
vy 0 k (1+k) 0 0 0 0
na._ |v8 i 0 oL 0 k (1+k) 0 0 0
vl DPER] o A= 0 ko (1+k) 0 0
v 0 0 0 0 k (1+k) 0
o 0 0 0 0 0 k 1+k
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vVi=A"T"V'4+AD "+ + A"D! = (39a)

vi=A""v'+ {;\7’ + - AT" } P'=A""VP4+A Y (I-=A") (I=A )HILYM‘ constant BC u(=3,t) =1 at x = —3b' (39h)
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e When does v blow-up, i.e., tend to infinity?

QW 10 RC

C

e Assume for the moment that A= = D is diagonal (most general case by using Jordan decomposition is discussed in §5.3).

d 0 0 0 0 0
0 d 0 0 0 0
0 0 ds 0 0 0
0 0 0 d¢ 0 0
0O 0 0 0 d5 0
0 0 0 0 0 dg

v'=D"v" where D:= where dy,--- ,dg are diagonal values of D (41)

2.1.9.3 Spectral radius of a matrix

e Based on these equations we get,
d} 0 0 0 0 O
0O d; 0 0 0 o0
0O 0 dy 0 0 0
0 0 0 df 0 0
0 0 0 0 d 0
o 0 0 0 o0 d

e Let n — o (i.e., t, = nk — o0). When the solution goes to infinity at t,, (i.e., components of v™ go to infinity)?

e Answer: I[I d 1 for ANY i solution blows up!
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v A" for zero BC on the left (40)
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This is unconditionally stable.



In this case, since A is lower triangular, the solution for next v is trivial
A L Tt

0
0
0

(37h)

vy u(0,1,) (1+k) 0 0 0 0
vy 0 k (14+k) 0 0 0
. v n_I 0 o 0 k (1+k) 0 0
M P b*=k| A= 0 ko (1+k) 0
vl 0 0 0 0 k (1+k)
vP 0 0 0 0 0 k
vy =1 BC
o k 1 k 1
1+ k! — kol =0 e — e —)=——1+——1=1
(1+F)v] vy » A= TRV 1Akt 14k 14k
- . k 1 k 1
Eyvl — kot =@ s st —— = — 1 —
Qe =N WETERS IR Y Tk IR
. : k 1 k 1 k
kv = kvl =of = A=l g gl = e e
FE = bl R LAk e e
k 1 k k 1 ]
AV N <15 GRS | = " — N O — =
(14 k)vy — kvy = v} vy —l+l.'l“+—l+klx —I‘L'—I$K‘+—l+l.") (—l+k)
I 1 k E 1
1+ kvt = kol =ob P +_-‘.'___.(_.) —
S S - TR T I RS T T k\1+k) T 14k
14k kol =08 - vy = k vl + 1 o k ( . ):‘ gt g
) i - ST+ 14k T 14+k\14k 1+k
[ D @ ® o ®
=1 =1 =1 v§=0 v =0 =0 v)=0
In 2D and 3D FD of PDEs in general, we don't get this nice 1 node solve at a time
Global coupling of implicit methods make them more difficult to parallelize.
2.1.9.6 Backward-time forward-space: A conditional stable implicit method
e For Backward-time forward-space (BTFS) scheme we have, cf. ‘.!‘Jl»‘b
ol =03) g —opH
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e By writing the equations for points 0, 1,2,3.4,5 (compare to 1,2,3,4,5.6 for BTBS),
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Backward-time forward-space: A conditional stable implicit method o

e Thus, all cigenvalues of A are k& meaning that all eigenvalues of A~! are 1/k and
p(A™Y) = I\l =
BTFS scheme is stable if p(A™ ) = =< & k2>1 (49)

e That is,

The IMPLICIT method of BTFS is CONDITIONALLY STABLE and large enough steps (k > 1) must be taken for stahility

e This is a good example of an implicit method that IS NOT unconditionally stable. That is, it does not have the main
advantage of most implicit methods (unconditional stability) yet is more expensive than explicit ones (in 2D and 3D) for this
problem.

e The canse of this problem is again the wave (right-going with @ > 0) not being consistent with FD grid. Although we cannot
always make such arguments and stability of a method should be directly evaluated.

e Likewise BTBS method will only be conditionally stable for left-going wave.

Higher order PDESs: Ilell'.‘1|m]i:' PDEs (Diffusion equation) 95

2.1.10 Higher order PDEs: 2"order parabolic & hyperbolic PDEs

# Consider the solution of the parabolic PDE,
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