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e Equation suggosts k < O(1) should provide the stable time step for this parabolic PDE, where O(1) is a constant number
that we derive later. This number depends on the particular stencil used for the parabolic PDEs.
e Accordingly, we observe,
k<0(1) = kypax & h? Eiax is the maximum stable time step (52)
That is, we observe that for parabolic PDE k.. is proportional to k* rather than k for hyperbolic PDEs.

e This implies that for small grid sizes, the explicit parabolic FD schemes (and in fact FV, FEM, etc.) have a much more
stringent time step requirement compared to explicit hyperbolic schemes.

e FD scheme can easily be applied to 2D and 3D diffusion equations as well. The 2D, 3D diffusion equation reads as,

uy —V.(DVu)=r forconstant uy — DAu=u,— D(uy +uze+uz)=r (53)

e The forward time, forward space (FTFS) scheme for this equation is (2D version shown),
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- kD - kD . . .
k, = T ky = T Normalized time step for parabolic PDE (54c)
12 1=
¢ Finally, to obtain an implicit scheme, we write FD equations at time step n + 1 rather than n.
e For example in 1D, backward-time central-space (BTCS) scheme for the discrete solution v gives,
vpt g et bt -2t
I -D h2 =Tm = (55a)
(14 2k)yontt — Bt +ontl)y = o + 70 (55h)
- kD
k= el Normalized time step for parabolic PDE (as in )
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o This scheme will be stable for all k.

2.1.10.1 Higher, order PDEs: Hyperbolic wave equation

e Consider the wave equation,

(L\’\é ¢ \&V’* Al =1 (56a)

— ~——IC 1: 0*" temporal derivative u(x,0) = uo(x) (56h)
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o= 21 =Rl + KA (vh vl (57b)
k=— Normalized time step for hyperbolic wave equation (57¢)
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Notice that this is a multi-step scheme, requiring the value of v !

For n = 0 (solution of first time step after IC) we need v,,' which does not exist!

The trick is using initial 1**value at time step 0 by backward time difference

0 a1
i(mh,0) = tig(mh) = (iy),, = O(x = mh,0) = Vi[v] = IL% => (58a)

m

= Uo,;, — k(i) (58b)
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Same process is applied to PDEs with higher temporal derivatives: by using initial temporal derivatives v,," are formed.
Similar to the parabolic case, and in contrast to the 1%order advection equation, this FTCS scheme is conditionally stable.

The construction of implicit schemes is also straight forward. For example, by writing equations at time step n + 1 rather
than n and using backward time central space we obtain,
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ke . . .
k= T As in (1a): normalized time step (59¢)
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2.2 Finite Volume (FV)

@]
FV methods directly work with the balance law OK + /? <®{) - g\ ] D
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e Consider the balance law with temporal flux ¢ and spatial flux f(g).
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k=t —t, time step size (which can easily be nonuniform) (65b)
1 tnit
Froipm = I/ flg(2mery2.t)) dt some approximation of the average flux along .lmtl/r) (65¢)
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e For hyperbolic problems mfonnm IUH propagates with finite speed, so it is reasonable to assume that we can obtain F7
: the cell averages on the two sides at the beginning of the time step,

based on the values Q7 _, and

F..: x/f):]:( =15 Gm)s Fnl.+l/”=}.

where_E _is some numerical flyx function.
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o For hyperholic problems information propagates with finite speed, so it is reasonable to assume that we can obtain F}_, ,
based on the values Q7 _, and Q7,: the cell averages on the two sides at the heginning of the time step,

Fm 1/2 = 'r(Qm 1 Qm Fu+l/" T 'F( ::|+l (66)
where F is some numerical flux function.
Continuing with explicit scheme:
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e For hyperbolic problems information propagates with finite speed, so it is reasonable to assume that we can obtain F7
, and Q7.: the cell averages on the two sides at the heginning of the time step,

based on the values Q7
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where F is some numerical flux function.

N W L/ N N

DC Page 5

m-1/2

m+1) (66)

,mG%
Al L@ﬂmmwg of A s
S



Sﬁgw\

goane gty o TV valads

@ WOL +w Q) ¢
| + W O\m\

%\A\% \s %\w MG@W&) o@ < QQTJ&/% {/\/x oW ﬂ'/\k \aofunwy Wr 1h9c
@ M «
Vs QT oweprh 0
P Nict = &Mg\@\




L=~ T

- 1] AN

f O

Neh = Eilx

So, the nice thing is that each FV and the entire domain satisfy the balance law

Another advantage of FV over FD method is the flexibility in defining numerical flux F

2.2.2 FV examples from 1*order hyperbolic PDEs

e To illustrate the importance of numerical flux function (66) we consider three difference options.

e We consider the hyperbolic system ().

N@ ./\/\ﬁ:@\

9.:+{f(@}=0 PDE (70a)
q(z,t =0) = qo(x) IC (70b)
o Specifically, we consider the linear case of (:T'U_.-:I) which is the advection equation,
qe+aq.=0 flg) =aq (71)
where for simplicity it is assumed the wave speed a(x, 1) = a > 0 is constant and positive. That is we consider a right-going

wave. If a(z,t) we get a source term of the form —a .(xz,t)q which is ignored here as it does not change the nature of the

influence of different flux options (lower order derivatives).

2.2.2.1 1. Average fluxes

e The average flux option means that we use the average of the fluxes from the two sides,

F(Qm-1,Qm f‘an-l’*’f‘Qm)) = F(Qn, Qmi1) = 5 (I(Qm) + f(Qm+1))
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FV for advection equation with average fluxes is the same as FD with CSFT difference scheme.
Is this scheme stable (conditionally stable)

Unfortunately, this is UNCONDITIONALLY UNSTABLE.

e Specifically, if we consider the simple linear advection PDE (@). equation (; becomes,

(44 ' — (.)::1 + (s)m +1 (g)vn 1

vm

k 2h,,

=0 (75)

which is forward-time, central-space (FTCS) scheme discussed in (27¢). As discussed under (34) this scheme is unconditionally

unstable!

e So simply using the average fluxes not only may affect the accuracy (compared to correct
fluxes) may also render the method unstable!

2.2.2.2 2. Lax-Friedrichs fluxes

e To simplify the discussion, we assume that the spatial grid is uniform (extensions to nonuniform can be done easily).

e To address the problem with average fluxes, Lax-Friedrichs fluxes modify them by adding a jump part of g values.

F(Qm-1,Qm) = 3(! (Q@m-1) + f(Qm)) - (Q,,. Qm—1 = (76a)
1 l >
F (@ Q) = 5 (£(Q5) + £( Qi) ,} (@i = Qi) (76b)
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I mentioned before that this scheme is conditionally stable.
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