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e For other problems a similar analysis can be followed. For example, For the beam problem p.»l';lr,# - EI ;};-‘f = 0 we have

. . . . . - - . - - - T E B & .
a 4'" order in space and eigen modes will be build from sin#,cos #,sinh #,coshz for # = # and L = | ,.’T.{J T'hat is,
&(r) = Ay sinz + AycosT + Azsinh ¥ + A coshz. Depending on the problem setup, we have essential or natural BC for
s il R iy
either displacement y or rotation # = —:{ at either of the 4 end points. The natural modes will be obtained such that the

homogeneous 4 x 4 system (4 BCs for 4 unknowns A, to A;) has nonzero solutions for A = [4; A, Ay _-l,,]"': e, |A]l # 0 and
&(x) is not trivially zero.

3.1.7  Error analysis for natural frequencies and natural modes
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What is the error between numerical (discrete) modes and frequencies and exact ones?
Preliminary:
3.1.7 Error analysis for natural frequencies and natural modes
o If the differential equation has 2m highest spatial derivative, shape functions must be globally C continuous.
e Below, two cases for bar and beam examples are shown:
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3.1.7.1  Preliminaries: FEM polynomial order p

Bar (1**order) Bar (2")

Sample shape function Ny=1- ’l_

Maximum element order p 1
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e Note that the element maximum polynomial order p is not the same as minimum global required continuity m — 1. YM&&

e For example, in the figure both elements are for the bar element with m — 1 = 0 (C" global continuity).

e Yet, the element on the left is 0" order (p = 0) and on the right 1**order (p = 0).

3.1.7.2 A priori error estimates for natural frequencies and modes
e A priori error estimates for natural frequencies and natural modes are in the form, &
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grid resolution h = the largest element size (size of an element is the radius of its circumscribing circle (2D) / sphere (3D))

1. 0 < wh —w;, i.e., having .c," < w; is not preserved once th ] re vi d [Hughes, 2012] (e.g., whe
integration or incompatible modes are employed or when hmped mass marrix is nsed).

2. The rate of convergence (i.e., power of h) of eigenvalues is twice that of eigenfunctions in the H™ (Hilbert m norm)
[compare and (222b)]. That is,

Natural frequencies converge twice faster than natural modes

2p42-m p4-1

3. The appearance of powers of the natural frequencies on the right-hand sides of _L_ and 4:‘7 suggests
that the quality of approximation deteriorates for higher modes. Recall that wy < w; < -++ < w,. This can be
explained that higher modes have higher spatial variability (wave number) and for the same resolution of FEM mesh h
it is more difficult to capture the exact solution.

4. K, M (and C) are often integrated numerically, i.e., by quadrature.
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(a) For the convergence rates in h in (222)) to hold:

The quadrature rule must be accurate enough to exactly integrate all monomials through orddr p +

Order of the highest-order monomial appearing in the element shape functions,
p = Order of the element
—_—
m — 1 = Level of global contimiity of FEM shape functions

-—

Example for evaluating p and p from 2D bilinear finite element:

e For this bilinear element we observe the highest monomial y
order in shape functions is two. For example, N, has a term
- l} =9
7 7 =
e At the same time, this element is considered linear p = 1
because the highest complete polynomial space covered (for
. - N . st .
this given Cartesian geometry) is 1%*. For example for it
to be second order it should have terms like 22y? which the
shape functions of this element do not have such monomials.
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e The sum of components of M€ is again equal to m*.
e The mass matrix IS diagonal.
e As we will see this will results in DIAGONAL global level mass matrix.

e For the second order bar element we use the Simpson rule,

oL
Quadrature( / f(x)dz) = %f{ll] - %_ﬂl. 2)+ {%ﬂL) (168)

which results in

note that,

The lumped mass matrix is again diagonal.

I'he diagonal values may NOT necessarily be vfl"lwl.

for second order 1D element (169)
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If reduced order quadrature is used, we need to enforce condition (a) above to ensure preserving the maximum convergence
rates for modal quantities and enforce condition (b) to ensure convergence of modal quantities to exact values as h — 0
(the minimum requirement)

This becomes critically important in the formation of lnmped mass matrices where at times special quadrature rules, e.g.,
Lobatto quadrature (it is similar to Gauss quadrature but maintains the end point values of the interval as quadrature
points) need to be used to preserve maximum modal quantity convergence rates.
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Convergence of fundamental (first) natural frequency for

a quadratic 1D bar problem
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The plot demonstrate how the accuracy is modal frequencies decreases as higher mode frequencies are computed and compared
with analytical ones.

e 1 is the mode number in the figure.
e N is the mumber of elements in the figure.
e As n x  increases, i.e., higher modes RELATIVE to the element size h o 1/N are considered the error starts to increase.

e That is, the error is not merely a function of which natural mode is considered, but more on how accurately an element can
approximate spatial variability (wave number) of a given natural mode.

e Again the violation of w" < w; from for lnmped mass matrix option is due to its violation of Galerkin methods required
for of w! < w; in (222h).

e Interestingly, we observe that the reduced integration order (of the mass matrix) performs better than full integration order
with consistent mass option.

e The sharp jump of the error at 5 = 0.5 signals quick deterioration of calculating high natural frequencies (relative to the
number of elements). This is one point of concern, and one of the advantages of isogeometric FEMs (a relatively new FE
method) is having a much better performance in solving high natural frequencies (relative to the number of elements).

e To conclude figure below compares axial and flexural frequencies using different mass matrix options:
— While relative error in the 1D bar problem is directly

related to how many wave numbers an element can TABLE 11.3-1. PEACENTAGE ERRORS OF COMPUTED KATURAL FREQUENCEES, USENG
s . I(ook 2002' DIFFERENT MASS MATRICES |1 1.7]. FOR BEAM ELEMENTS WITH PARTICLE-
model, the absolute error quickly increases as mode MASS LUMPING, @ = 01y EQ. 11.3-3. STRUCTURES ARE UNIFORM AND
number increases. MODELED BY ELEMENTS OF EQUAL LENGTH.
Mode Type of mass matrix used
— Consistent and lnmped mass matrices option again —— Particlo-mans lomps (%) Average [m] (%) Consisent [m] (%)
provides higher and lower frequencies than exact Axial vibration of am eight-clamnt bar, o sad e, o s froe
ones while an average between two can provide both 1 ~016 000 <016
higher and lower values. 2 -l -003 +las
3 - 020 +405
The errors in flexural natural frequencies are higher : ;;':: ‘1:':: :;':
than axial ones for the same number of elements. Fleural vibeation of 8 five-chement camtilever beam
1 =180 -091 0.0
— The unavailable natural frequency for beam problem ) 500 e 008
with n = 10 and lumped mass matrix is that for 3 -931 503 +036
this particular computational set-up natural modes 4 1362 il 7
10 Unavailable +91.77 + (7,83

bevond 4 are infinite, implying care that must be
taken in using lumped mass matrix in practice.

4.1 Introduction to time marching schemes
e Our interest in this section is solving ODEs in time.
e Consider the following system of equations obtained by FEM discretization ()
MU +CU+KU=R (225)
e This equation is an ODE in time.
e Spatial derivative terms are already eliminated by using FE discretization in space.

e In this section we discuss methods by which we can solve first and second order temporal ODEs, i.e., ODEs with initial
conditions.

e There are different aspects for which we want to classify the solution of (225):
1. Hyperbolic vs. Parabolic: FE discretization of a hyperbolic and parabolic problems are often reduced to the following ODEs,

MU+ CU+KU=R Hyperbolic Example: Elastodynamics M = mass, C = damping, K = stiffness matrices
(226a)
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MU+ KU=R Parabolic Example: Heat equation M = capacity, K = conductivity matrices (226b)

Note that any second order (or n'* order) ODE can be written in the form ] and the form itself does not directly imply
if the underlying PDE is hyperbolic or parabolic. For example, we can express (226a) as,

U-V=0 (227a)
MV +(KU+CV)=R (227h)

where V represents the temporal derivative of U, i.e., velocity when U is displacement. We can express this in the form

[2265):

MU + KU = R. where (228a)
U ool o o =1 o

U=| |, M= K= R= (228b)
v 0 M K C R

thus

e Having only one or two temporal derivatives on itself does not imply whether the underlying PDE is hyperbolic or PDE.
e Whether the underlying equation is hyperbolic or parabolic results in how the (smallest) element frequency scales versus
its size.
~ Hyperbolic PDEs: w"  h = Atx 7‘1—
Parabolic PDEs: w" o h? = At g—

nwm

2. Single-degree-of-freedom vs. Multi-degree-of-freedom (SDOF vs. MDOF)

For the temporal solution of PDEs we use a variety of different time marching schemes.
As we observed from they are often expressed in the form MU + CU + KU =R or MU + KU = R.
That is they are ODEs after FEM discretization.

Similar to modal superposition from for hyperholic case (MU +CU+KU = R), we can reduce the general equation
to n SDOF equations of the form:

# 4 2wi + wlr = f(t) corresponding to MU+CU+KU=R (229a)
M () corresponding to w (229h)
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