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MU+ KU=R Parabolic Example: Heat equation M = capacity, K = conductivity matrices (226b)

Note that any second order (or n'* order) ODE can be written in the form (226b)) and the form itself does not directly imply
if the underlying PDE is hyperbolic or parabolic. For example, we can express (226a]) as,

U-V=0 (227a)
MV +(KU+CV)=R (227h)

where V represents the temporal derivative of U, i.e., velocity when U is displacement. We can express this in the form

(226b):

NIG + KU = R, where (228a)
_|u . 1 0 i 0o -1 0
U= . M= K= R= (228h)
v 0 M K C R
thus
F + 28wi + wlr = f(t) corresponding to MU+ CU+KU=R (229a)
T4+ Ar = f(t) corresponding to MU+ KU=R (229h)

o Consistency

Consistency refers to the concept that the update from step t,, (and previous ones in multi-step methods) to t,,., is
“consistent” with an underlying update of the exact solution from ¢, to t,.,; and the local truncation error, i.e., error
of computational versus exact values for t,,, is O (At?), p > 1.
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e A variety of time marching schemes can be directly applied to MDOF ([226) or to their indiv ldud] SDOF

o In the next so(;t@)n &“'“ use @ SDOF f()rof MDOF (226 -
3. Single-step vs. Multi-step: - O\\) IQ

° Smgl ( (Jnl\ values 4_@ are n ('d to obtain the solution ior tns1.

B ‘\lnh step: \aﬁ?‘s of t,, 1 , are required to obtain the solution for t,,.,.

4. Single-stage vs. Multi-stage

o Single-stage: Single We directly ¢pmpute t,,., from t,, (and possibly prior values) in one stage.

e Multi-stage: To obtain t,,,; from previous solutions several intermediate values are computed from t,, to t,,,,. Runge-
Kutta (RK) methods are Multi-stage methods. 'k
at
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5. Global versus local time step size: In explicit methods (below) smallest elements pose serious challenges in the time step of the

entire domain. It is desirable to use smaller time step for smaller elements than larger ones. The same concept, but only from
accuracy perspective and not for stability reasons, becomes relevant in implicit methods. The flexibility of a time marching

scheme in this respect increases in the following order:
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Large local errors (-> refinement) or high geometry complexity can
result in highly refined region in a mesh

e Global time step: All elements, small or large, share the same time step At =t,,, —t,,.

e Subcycling: Smaller elements take smaller time step, often in factors of 2% (At/2*) time smaller than the global time
step At = t,, 1 —t,,. Although elements have different time steps, at the end of the time step all have the same time
value t,,+;. That, is from global time step to time step the method is synchronous.

e Local Time Stepping (LTS) (asynchronous subeyceling): Although LTS is also used for subeycling approaches, in general
it is used for asynchronous time stepping schemes that each element takes a local time step (based on its stability limits
in explicit methods) and element final times do not need to be synchronized.

LTS/ subcycling approaches, along with IMEX schemes, will later be discussed as approaches to solve highly graded FE
meshes and /or still problems where some operators of the PDE requires very small time steps with explicit methods.
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6. Stability:
e Unconditional unstable: The time marching scheme is unstable for any At. Clearly, such time integrators will not be
used at all!
e Conditional stable: At must satisfy At . < Atpax (or more generally satisfy special conditions) for the solution to be
stable.
e Unconditional stable: For an underlying physical PDE, the numerical scheme is stable for any At.

7. Order of convergence:

e For a method that is convergent we need to know how fast the numerical solution converges to the exact solution of the
underlying problem. For example, the error between the two at a given time can temporally converge as At?. We also
have a spatial order of convergence h? based on the order of of elements used and the type of error considered. The

concept of order of convergence is closely related to “consistency”, “local truncation error”, and "convorécncc” discussed \’)\\ /\
below. ﬁ\/’_'_\_‘s %k(/\ t \/

e In general, achieving high temporal convergence rates is much more difficnlt than spatial ones, as FE method can easily
accommodate any spatial order of accuracy, but often FD type temporal update makes it challenging to achieve high
temporal orders of accuracy.

8. Explicit vs. Implicit
e Explicit: Refers to being able to solve solution for t,,.; “explicitly”. Some aspects are:
— No global matrix equation or nonlinear solution needs to be solved. That is,
— Even if the underlying PDE is nonlinear, update equations will typically be linear.
— Are often only conditionally stable.

— In time stepping methods, explicit methods are often expressed for t,,, have only M (and C) on the LHS of the
update equation. If C = 0 and mass matrix M is diagonal (or capacity diagonal in heat equation) is used the update
equation is trivial and no global equations should be solved. In fact. if the solution cannot be reduced to a local and
small matrix npdate equation. many still do not call the scheme explicit!. In these course notes, we label a larger
group of problems explicit, basically by referring to schemes that write the equations at t,, rather than at a later
time.

— To enable local and no global matrix solution strategy and other reasons discussed later explicit methods are often
matched with diagonal “mass” matrices.

e Implicit: Refers to being to solve solution for t,,,, “implicitly”. Some aspects are:

— Involve global matrix equations. Also,

— If the underlying PDE is nonlinear, update equations will be nonlinear.

— Are often unconditionally stable. The rare ones that are conditionally stable are not used. There are different levels
and types of stability which we do not cover all in this course. But in general, the implicit methods in practice are
stable for much wider ranges and stages of time step and PDE coefficient.

— In time stepping methods, explicit methods are often expressed for t,,., have all M, K (and C) on the LHS of
the update equation. Even for linear PDEs they require the solution of a full matrix equation for the solution of
MU + CU + KU =R.

— For considerations that will be discussed later implicit methods are often matched with consistent “mass” matrices.
e Implicit-Explicit (IMEX): These are the schemes that use both explicit and implicit integration schemes, in one of both

M of the following modes

U Domain IMEX: Some parts of the domain are solved with explicit solver some parts with implicit solver. For example
80\\4 regions with small elements use implicit solver and large elements explicit solver. Another example, is using implicit
—solyer for salid part and explicit method for a fluid part.
Operator IMEX: Example is using implicit integrators for more stringent operators such as parabolic ones and
explicit integrators otherwise, e.g., hyperbolic operator. Same concept can be applied to stiff PDEs where the stiff
operators are integrated implicitly.
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o Consistency

Consistency refers to the concept that the update from step t, (and previous ones in multi-step methods) to ¢,., is

“consistent” with an underlying update of the exact solution from t, to t,,; and the lm-g-! Lruncat ion error, i.e., error
of computational versus exact values for t,,, is O (At?), p > 1.
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— Convergence: The numerical method convergence to the exact solution as At — 0, i.e., MU + CU + KU = R is exactly
integrated. This does not mean that we converge to the underlying PDE solution. For that element size h must also
approach zero.

Convergence rate: The rate in which the numerical solution convergences to the exact solution in terms of At”.

In this section, we review various time marching schemes and in the following section we present their stability and convergence
analysis.

4.2 A One-step single-field time stepping method: Generalized trapezoidal rule
e We consider the solution of a first order ODE of the form:

Md+Kd=F Temporal ODE (after FEM spatial discretization) (230a)
d(t=0)=dg Initial Condition (IC) (230b)

this can have been derived from the discretization of a parabolic equation (226b)) or two-field representation of a second order

hyperbolic equation ).

e The update equation for the time ¢ = ¢,, + oAt is written as,
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a Method Explicit/Implicit Temporal Order
0 Forward differences: o
forward Euler Explicit 1
Trapezoidal rule; o
midpoint rule; Crank- Implicit @
Nicolson
| Backward differences. Implicit 1

backward Euler

e It is clear for (306) not to blow up we need to have,
1—(1—a)AtA i
Al <1 ] 238
14l < - = T 1tadty o (238)
which results in the following conditions:

a < 1 Conditionally stable A< =2
’ . A\4< l_) (239)
a > 1—, Unconditionally stable &“O\) >\
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e Also figure below demonstrate how for unstable methods amplification factor A becomes less than one, resulting in oscillating

and gowning solution.
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Generalized trapezoidal rule (a Method)

Md + Kd=F

d+ Nd=F
d(0) = d,

d(0) = d, S

M + aAiK)d,,,
=M - (1 - a)AiK)d,
+ AtF,q
d, given

| =

(l + aAlA‘)dnél
= (1 = (1 = a)AtA)d,
+ AtF,.,

d, given
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4.3 Linear multi-step (LMS) methods
e Consider the first order ODE,

General nonlinear first order ODE (240a)
(240b)
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— k: Number of steps that the method goes back from the time step ¢, ., y value we want to solve for.
— a; and 3; are parameters that define the method. The method

— Linearity in LMS does not refer to linearity of f, rather to the linear interpolation form in (241).

— is called explicit if By = 0. It is otherwise implicit.

— is called backward-difference if 3; =0 for i > 1.

— An example of LMS scheme is the 1 step generalized trapezoidal (a) method

n+l _ n
Y Y @@ -y Fay™) & (1-a)f(y") +afly"t) D=

(=1)y™ + aAtf(y™) + (1)y" + (1 — @) Atf(y™) = aoy™ ! + BoAtf(y"+!) + ary™ + B1Atf(y") = 0

=X

— That is ag = —1,ay = 1, 3y = a, 3; = 1 — a for generalized trapezoidal rule.
— For k =1 (e.g., generalized trapezoidal rule) the scheme, rightfully, is often called linear single-step method.

— Reminder: Generalized trapezoidal rule encompasses forward and backward Euler method and trapezoidal method.

e As for 2nd order ODEs, i.e., those arising from structural dynamics, a linear second order ODE takes the form,

For linear 2nd order ODEs we have the following form of LMS

J=f(y,5.0 =Gy + Gy +HQ

(242)
e A k-step LMS method for linear second order ODE takes the form,
13
D {@airi + ABG Y- + AP Y[GoYuros + Hlty )] = 0
i=0 (243)

e where now a;, 8;,7i, i < k are the model parameters. Similar to the first order ODE we have,

— The method is explicit if Bp = 0 = 0.
— It is backward difference if 8; =~; = 0,7 > 1.

e In the following, we describe a few LMS schemes for the solution of elastodynamics problem.

e We already used a 1-step LMS scheme of generalized trapezoidal rule for the solution of first order ODEs. That for example
had direct application in the solution of parabolic PDEs.

DC Page 10



