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4.4.1  Central Differenc ethod for elastodynamics (an explicit LMS method)
o For the equation (226a) (MU + CU + KU = R) ral differ spproximations for both U and U
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o For the equation (226a)) (MU + CU + KU = R) we use contral difference approximations for hoth U and U:
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U= gaoU - 200+ )

. 1
. — ] e
U= 3 'i U+ )
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o After plugging ([24) in {226a) (MU + CU + KU = R) for time step 1, we obtain,
Lm+ ic“‘*u =R- (x - im] - (—I-M - Lc)--uu
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MY, = U, — At °U, + A'T"U,

(246)
o Solution strategy from ¢ e to tgg

From (245) the solution for U at ¢ vstem solition with matrix coefficiont

where MU"*! = R" (247)

If the system is undamped we make the option to have the
problem

1S matrix M = 5M. If C x M we still have a similar

If besides C = 0 (or it being proportional to M) we have a lnmped mass matrix, we do not need a matrix equation
and npdate is followed as,

ey, = 'ft,(“—") for R=R~ (K- 2M) 0~ (M) s
L Ar? ar? (248)
Another advantage of lumped mass matrix is that:
+ Lumped mass matrix ¢ f moving waves,
+ Explicit method typically o period of moving wayes
so matching explicit integrators and hupe ass matrices to some extend cancels the period error of the numerical
method and is preferred from this perspective. On the other hand, if we had used e tent mass matrix that would as
well would have shortened the period of moving waves and exaggerate the problem of explicit time integrators.
Another important implication of not having K appearing in M is that we do not need to actually assemble K.
We can directly add contributions from stiffness to the global force vector R at the element level
KU = 2 KU = E 0
‘ i (249)
The elimination of assembly of K (as its contributions can be directly added to global load vector at the element
level) and assembly of a nontrivial M (since it's diagonal only the diagonal values are assembled) substantially rednces
computational cost as well as memory as none of these matrices are stored in memory (M is assembled to a vector)
TABLE 9.1 Step-by-step solution using central difference method [general mass and damping matrices)
A. Initial calculations.
I. Form stiffoess matrix K, mass matrix M, and damping matrix C.
2. Initialize °U, °U, and "U.
3, Select time step Ar, At = Ar.., and calculate inrtegr
1 1 1
g = = ay = ——; a; = . ay = —
as’ ' 24 2 = 200} .
4. Calculate “*U = °U — Ar°C + a °U.
5. Form effective mass matrix M = a;M + o,C.
¢ Trmpiura S0 = LD
B. For each time step:
1. Calculate effective loads at time :
-
R="R (K- aM'U- (@M - aC) ~¥U
2. Solve for displacements at time ¢ + Ar:
LDLT 4y = Jﬁ
3. If required, evaluate accelerations and velocities at time 7:
U=a("2U-2U+"*)
.
U = a(="%U + *¥U)
Houbolt method 302

4.3.2  Houbolt method (an implicit LMS method for elastodynamics)
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. 1
+a) = — ey — L r-Argp — 9 1-241
U ’(ll U-18U+9"%U -2 U)

. 1
A = — (214 = §'U 4 4 MY — 2
Al’( ) (251)
o After plugging these values in (226a) (MU + CU + KU = R) for t,,.; we obtain,
2 n gy = e ( s 3 )
(m1M+“'c+K) U="*R+ Ar’M*A’c U
[
Feconge 1 ¢ (M + ) e (e )
ot Ar 24t Ar 3t 252)
Lmypte Y
e We ohserve that that K appears at wsembled
e In addition if the problom were noulinear, this methods update equation would have been nonlinear

o This implicit method is unconditionally stable. Table from [Bathe, 2006 summarized the system update for time step £,

TABLE 9.2  Step-by-step solution using Houbolt integration method

A. Initial calculations:
1. Form stiffness matrix K, mass matrix M, and damping matnx C.
2. Initialize °U, °U, and °U.
3. Select time step Ar and calculate integration constants:

2 11 S 3
L vl o= o =35 o= @y = ~2a0,
=2 a=2
i 9

4. Use special starting procedure to calculate 4U and *U.
5. Calculate effective stiffoess matrix K: K = K + aoM + a,C.
6. Triangularize K: K = LDL”.

For these LMS methods with high value of k, many times we use a simple time marching scheme for the first k time steps to buid enough time step values (for example
central difference) and after that we can switch to our high order LMS method.

Disadvantages of LMS methods:
1. For early steps we need to use a lower order method to build enough prior steps.
2. The time step is fixed because the difference formulas for multiple steps are obtained by assuming Delta t being fixed.

We want to discuss methods that remove the fixed time step constraint

4.4 Multivariate single-step methods

a) Fortime step n + 1, they only require the solutions from time step n. Unlike LMS methods it does not go further back.
b) Primary unknowns are values, time derivative, second time derivatives, etc. of the unknown.

AYV\,\\& %Xﬁzﬁ (AN O e G e

c) Since only one step back is needed, we can easily change the time
step (for example when more accuracy is needed, refine the time
step).

e In contrast to the explicit central different and implicit Houbolt methods that require values for t,,_, and carlier for the
solution of ¢,,, we are looking for solution schemes that only use values for t...

o To make this approach to work, we need to add U and U (velocity and acceleration) to U as other variables of the problem
that should be updated from step t,, to £,,.

o The values for U and U may be kept in the formulatio they are anyhoy
»date f

o We discuss two very important examples from these approaches: #-Wilson and Newmark methods

The #-Wilson method

1.4.1 The #-Wilson method Q A/ ,{‘ M
o Tn 8-Wilson method acceleration is linearly interpolated be time step t, (1) to 8¢ after that SN
Yyrown S

A
— 1Al el Figure 9.1 Linear acoeleration %\}\Q,

[} r assumption of Wilson § method
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The assumption is that acceleration is linear between tn and tn + W h h

—_—— . oAt Figure 9.1 Linear acceleration
assumption of Wilson & method
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o To obtain **#2'U and also have values for the next time

step tnsy, we plug in ¢t = t + At (¢ refers to t,,) in (254) to obtain,
[rroany = 7 + LzA'(rch:ﬁ + ) (a)

- 2 Ar? il -
rosyy =y 4 9 Ar0 + 2 :’ ¢oni) + 210) )




First find ***2U from

Plug #7310 in

255)(a) to obtain *+¢41

o This provides values for the unknowns:
(oY — ) — -6_ru —2%0
(5 Al2 6 Ar

. - BAr..
140ANT =) D (1A = 1)) = 2 ] - et
U 0 (y-'u)-2'U U

%\& Q{\\\\ UY\V\V\W\\A\\
Deow ¥ S 7

DU 2O Ux kb st g fo B

6) the unknowns "4 and *+#3'U are written in terms of one unknown vector

es in (226a) (MU 4 CU 4+ KU = R) for t + 6At,

e Thus from |
plug these vi

RET

. Subsequently, we

M) + C '""l.l + K sy = eag

4R =R + 6(*“R ~ 'R) (25

257)

+ to obtain “**3U from the system below,

R Steea

(258a)
(258h)
R = R 4 B(MR — R) + Mlag'U + ay'U + 2700) + Cfa, U + 210 + a,11) (258¢)

50 A
O\

& Opeg we obtain ""T'l'\n/oh.‘iiu HHO2TT and 4240 from (258).
Z,

:
L .

» Finally, we plug 7 = At in (251) to obtain “*21 ;

time step, I I I R -
U+ Ur+¥m(_ mU_I ) N 7/ - + ?
I P Rt — N
+Ur + 2"lJr‘ +mmr‘t’_ _U/]

Mﬁ 7+uj

e The #-Wilson method is unconditionally stable for # > 1.37 and usually we use # = 1.40.

[ -

TABLE 9.3  Step-by-step solution using Wilson @ integration method

A. Initial calculations:

1. Form siiffness matrix K, mass matrix M, and damping matrix C.
2. Initialize °U, *1), and °L].

3. Select time step At and cakeulate integrati 8 = 1.4 (usually):
6 3 6 Ar do
G = TAy @ = o ay = 2ay; a = a=g

—i& 3 Ar Ar?

as = == 4 =1 =5 ar =i a ==

4. Form effective stiffness matrix K: K = K + agM + 4,C.
5. Triangularize K: K = LDL".
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B. For each time step:
1. Calculate effective loads at time r + 8 Ar:

R = R 4+ (MR — 'R) + Mlay'U + 2,0 + 2°0) + C(a, U + 20 + a, 1)
2. Solve for displacements at time ¢ + 6 Ar: .
LDLY o) = &R
3. Calculate displacements, velocities, and accelerations at time 1 + Ar:
#af) = g (*U - V) + as U + as'U
wa) = U + g (a0 + )
Ay = U + Ar'U + ay(*4U + 2 10)

The Newmark method 314
1 b S \{\/\wv n
s Ll + teaely g N 7»% g + .
o b U - U &Nt

4.4.2 The Newmark method

t t+at

o In Newmark method, U, U are expressed in terms of U, U, U at t,, and **2'U: JU % J( o
o= 0 + (0 < oA T U ) iU

Ay = U + 0 Ar [U.U *'\QJ':'Q] 2
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TABLE 9.4 Step-by-step solution using Newmark integration method

A. Initial calculations:
1. Form stiffness matrix K, mass matrix M, and damping matrix C.
2. Initilize U, °U, and °U.
3. Select time step Ar and parameters a and & and calculate integration constants:
& = 0.50; az 025[0,5 + 8)°

1
_&WB(;/ rx.l'.h ds—E"‘l.

a.“--l as——("—Z] as = A(l - 8); a = 8640t
@ 2\a

4. Fnrmd‘fechvesuﬁnessmatrlxx K= iK+ahM+a.C>
5. Triangularize K: K= LDL".
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A =0+ [(1 - 8) U+ 8~ Ar
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where 2. is compared with Af = wy., At where wy,,, is the maximum frequency from modal analysis which can conserva-

tively replaced by the highest element oi the smallest element size Wh

frequency of the individual elements).

if different elements are used the maximum natural

Runge-lKutta (R

) methods

421

4.5 Runge-Kutta (RK) methods
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e Explicit Runge-Kutta (RK) update the solution from time step t,, to t,,.4, through s > 1 stages:

Lot 7=
=1 - +
lgik ki= 1<i<s \j L )ﬂ > (262h)
[

Loa yC, Gre @\T\Wm AUwmE
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* The intermediate values k; represent intermediate slopes I:-Iﬁ} at intermediate independent coordinate t, + Ate; (which fall
between by, and ty. ) and dependent variable At 57| agk;.

# The fact that the upper limit of summation is ¢ — 1 is that each k, only depends on pri

# This enables a step-hy-step solution strategy where k; are for i =1 to i = s an finally the new update is computed

from (5a) (yai1 =wn + AT bk where).
+ RK parameters are,

1. Size 5 x & matrix a

2. Size s vector b;

3. Skze s vector ¢

» For an explicit RK method a;; = 0 for disgonal and upper diagonal members (i < j).

» This Is what enables the method to become explicht and reguire a simple and linear update equation for each & (even if f

i= nonlinear in y)

# Butcher tableau: The parameters of a RK method are shown in a butcher tableau:
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