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4.5.2 Second order RK (RK2) methods

o We formulate EXRK2 (i.c., explicit RK with s = 2). o Q&&O\Eg U\D\RQ\Q\\

The scheme can be written as %_\/R
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Yn+1 = Yn + Jr(bpl\[ + bg.l-'_;} where (264&]
kl = f{_rn-. yn) {264])]
1.‘-_3 = f(f,, +(‘2.ﬂf-yn +.'_'lt(121k1} (264c)
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e As usual we adopt the following notation,

Exact solution at ¢, from the ODE (261)): oy _ flt,y) (265a)

yltn) dt ' /{
= :T
Yr merical) s ion = Yn+1 (= \\

HK (numerical) solution at ¢,
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To obtain g, a trick (a simpler approach) is to study truncation error: a@\
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For truncation error analysis, we assume that the beginning of a step
exact and numerical solutions match (as if we are at time step 0) k& &J( \
ng

Q\é%./\ﬂ\\( \O.V < 3@( A \% N4 \

— \,

~ = exadl <A v
TR0 ) o by ¢ Wbl by

Ay dev
RY walndy

-

\6( km(\\ éﬂ@\w\ X+ - Alﬂ kwj\q( S

%W\w«

o The purpose of the analysis in the following is,

Let y, = y(t,) (266a)
Update exact solution to t,,.; (y(f,+)) using ( (266h)

Update mumerical solution to t,,. (y,+1) using (266¢)
Evaluate to what order At? exact and numerical solutions can match by adjusting RK model parameters, (266d)

e First, we evaluate the Taylor expansion of the exact solution from t,, to t,.,,

q dt i) g1 9T

Y(tns1) = yitn J+._h o (f,,j+ _\r —{:,,}—--- —._'.: 1w‘t:,.}—c (Aert1) (267)
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(ll_lr'” ) := f [ is a shorthand for f at (t,,y(t,)) that is f = f(t,..y(t,)) (the dependence on t,, is not displayed) (268h)

d%y - df _[(ofdt Llf lll[ 5
llT“") T {tn) = (7(“ c)u (If (ta) (from @)) =
d*y dy g af af
== : & = 268: S| i ations f := —(tn Y(tn)), fy 1= 5 (tn, y(ts
T (ta) == fe + fuf note T (t,) = f from (-baa{) and shorthand notations f, ot (tn u(tn)), fy ()y“ y(ts))
(26%c)
3
'lllT":(r,,) = fu+Sefy+2ffiy+ jf;;' {1 j-'fw, (obtained in a similar fashion by the use of chain rule) (268d)
o By plugging (268b), (268d), and (268d) in (267) we obtain,
Ytnsr) = y(t -—..\’j%—%.)"‘l/}-f,]\+%._\l"4‘fn—frl"‘«;‘ff»“—f]'j—f"f_‘/j.p(\(_,\,':; (260)
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We need an expansion of the numerical solution in terms of & “
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We need an expansion of the numerical solution in terms of & \‘
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YUnst = Un + At(byky + baky)
= yn + At(biky + b { f(t, + 22t y,, + a2 Athy)})

. 1 2 1 2
=yn+ At (b,k, +b {f + [(Atea) fi + (Atazky) fy] + [;(414-2)-/,. + 5(Ataziky ) fy + (Atea)(Atazik )f,!,] })
=y + At {biky +bof} + Ahy {2 fy + anky f, ) + At*hy {éngf.. + ‘—’,mg.k. ) fyu + r-gng,k,f,y} +0(art)

o Noting that k; = f by (264b), we have the final expression for y,,1.

Ynst = Un + At {by + b3}
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o Still we have only three equations in (271c) and four unknowns.

e We let ¢, to be a free parameter and obtain families of EXRK2 methods:

240 (272a)

gd( S #O by =1- 2% (272b)
1 o

by = —37; (272¢c)

[ (e
In equation (273) we present some of the well-known members of RK2 methods by assigning different values of ¢,.

Name cy RK parameters RK update

by 1 \ o “ e
Yn+1 =Yn+ 34K + k) b& W% k@_& k\\
b2 l, — D ¥Z/
Heun (Improved Euler) 1 =\ 3 = f(tn.yn) (273a)
a2 1
az| 1
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Predictor Corrector
Step 1: slope at the end point is Step 2: Slope is updated using
estimated by forward Fuler method  predictor equation /_, = #(x.,. /.,)
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Predictor Corrector
Step 1: slope at the end point is Step 2: Slope is updated using
estimated by forward Fuler method  predictor equation /_, = #(x.,. /.,)
yy= R,y Take the average slope from 2 y values
End value is estimated . MY Ao+ Avaylyy)
Yo = %+ Rx. ydh o )
Update y using the corrector equation
oy =y 4 Tty ’f(‘.. 2,
oo =2t ) n WO .
Midpoint (Modified Euler) l, m (273b) ’XI/ )
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ky = f(ta + 14t{y, + LAtk )
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Does it look like trapezoidal rule (when we wrote the difference \én \ . +h H — l/vx /\/ y 4.\%\\
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= yn + Atky
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ki = f(tn,ua) (273b)

= f(tn + 34t,y, + 1Atky)

by ll

Unst =y + At (%h + %k'_\)
n| |2 NN
Ralston . - 1 ky = f(tn:Un) (273¢)

¢ 4 )
ky = f(tn + 34t yn + 74tky)
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+ Ralston [Ralston, 1962, Ralston and Rabinowitz, 1978] determined that choosing c; = 3, (e2 = ;‘} provides a minimum bound

on the truncation error for the second-order RK algorithms.

Unit = Un + At {by +ba} [ + Atby {eafi + an ff,} + O (AtY) (270)
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e Midpoint (Modified Eunler) Uses the y, to project the solution to the midpoint of the interval, and from there compute the
slope k2 that would project y, to y,+1. Note that this method is different from trapezoidal rule that is an implicit method and
for which the update equation is written for the mid-point of the interval. Mid-point method, is often shown in the shorthand
form below,

AR (r,. +2ALya + %40(:".%)) Midpoint (Modified Euler) (274

e Improved Euler’s method is a Heun's method without iteration (next figure). The update can be expressed as,

Yns1 = Un + ;l;_\' (f(tu.yn) + f (ta + At oy, + Atf(t,.un))) Heun (Improved Euler) (275)

e To determine the order of accuracy and better understand the behavior of RK2 methods we define the local truncation error
T(tn), W
oK J\\ 7 V\uﬂ\rm(\b&

Wiln+1) — Ynt (276)

loa

T(tn) =

SLep o (=(

EXRK2 is as accurate as Trapezoidal method but EXRK2 is explicit and requires linear update equations without solving global
systems.

o We observe that the RK2 scheme is second order accurate in time.

e One thing that is clear from (277) is that we could not annihilate the O (At?) term in 7(t,,) due to the lack of number of
parameters for RK2 scheme, even though there was one free unknown value.

o This is often the case with RK schemes, that not parameters of an s-stage RK scheme are used in annihilating factors of At*
and for the ones that we can annihilate we often end up with more unknowns that equations. That, is why there may be
variants of RK methods for a given stage number s.

TABLE 25.3 Componson of trve and opproximate values of the integral of
=2 4 1227 - 20x 4 B.5, with the inifial condition thot y = | ot x = 0.
lh' opproximate values were computed using three versions of second-order
RK methods with o step size of 0.5

ond-Order
Midpoint Ralston RK

y Loyl (%) y Lol (%)
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4.5.3  Fourth order RK (RK4) method

e Perhaps the most popular RK method, is the d-stage (s = 1) fourth order accurate RK4 method helow

Ynst = Un + 1-’-\f“\'l '@2@'34’"4)

where (278a)

(278b)

ky = f(tn + 14t y, € ALk,

YA ‘ R ALR EER)

RK4 is a very popular explicit time marching scheme.

RKDG (RK + discontinuous Galerkin), Cockburn, Shu .... Often RK4 is

used < AOV\
oy et g %
Yna ki\“ s Q&Mf mgﬁ%ﬂﬁ%’l\/%@

Ky = ¢
Lé,%; Q)(Y\J— l&’\//i\
\(% - 2 < J(p\q“ SR Simpson's rule (from Newton Cote's family) f%h\ f@ l%\ f(bm J
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o When derivative is not a function of y, i.c., when f(f,y) = f(#) the solution to the ODE, is simply the integration of a scalar
function.

o In such case, RK4 reduces to the Simpson rule for integration of an interval; cf. (168):

L
Quadrature( [ f(2) d) = £1(0) + F1(L/2) + (D)

q
1 :
0 § b ! Yist = i+ gk + 2k + 2k + k)b
=il i
1 1 2 :. ] where
2 2 P 5 8 | k= fx, 0
1 1 4 leezdh —e 1 I
5 O 5 ) _~._Ls, - ! k= /(x,+ih. v,+§hh)
= o e i
TSRy e L | —
1 O 0 1 »M_I,\‘\ ks = 1(:, +3hn+ E""’)
" 1 2 2 | - ko= A+ b,y + hsh)
6 6 6 6 . e Sl |Chapra and Canale, 2010}

4.5.4  Butcher effect and higher order RK methods

e From these two results (RK2, RK4) one may be tempted to conclude that the order of accuracy is the same as number of
stages &, which is not correct in general.

e The number of unknowns for an s-stage explicit RK method is s — 1 (b's) + s (¢’s) + (s — 1)s/2 (a’s) = (s* +3s — 2)/2.

e The number of equations grow based on what f terms (and in what manner) appear as factors of At' terms. For example,
remember that the third order RK expansion was (269).

Utwss) = U(tn) + At + SAE (fi+ 1)+ GAC (fu+ Lol +2f oy + 113+ £1,0) + O (A1)

o Unfortunately, there is no guarantee that an s-stage RK method will have s order of accuracy given the different
trends the number of equations and unknowns grow and due to the form of the equations.

o For example, if S(0) is the number of RK stages needed for order o we have [Butcher, 1964],

N(o)=

= glmofoy

<4 (279a)

\ N &)\[ OQ O\((\)(@O—\\)}
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N(5) =6 \(\Mk é 34@9% EJ( Exk\ (279h)

N@©) =7 o qzc%‘”u (279¢)

etc..

e This phenomena is known as the Butcher's effect.

e Given the additional complexity of higher order RK methods and the Butcher’s effect (the need of having higher number of
stages than order of accuracy) limits the practical uses of higher order RK methods.

1
Yoot = o 4 o= (Thy + 32k + 12k + 325 + Thodh

90
where
S & e ks = fixi w
e For the fifth order of accuracy, from '.’:‘Jh.) we X
observe s = N(o) = N(5) = 6 stages are re- k= [(' + %,,_ Vi + %k:h)

quired.
lh ’ Ik h lk h
o Butcher’s fifth order, six-stage RK update b= f("‘ Egnptghit gl )

equation is given in |l ).
b - k= I(l‘ - ;IL ¥y — 71’-!7/1 + A\h)

3 3
ks = /( 4 Jhyit kb + EAk.h)

/ 3 2 12 12 8 )
ki /(| + b, v — =k h+ =koh+ —ksh — —keh + —k‘,h)
‘ 7 7 7 7 7 (280)

Is it worth it to use higher order method?

100 —
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A posteriori error estimate: We create something that replaces the exact solution (often in the form of higher order [p-
enrichment] or more accurate solution) and from which we calculate a representative error w.r.t. the exact solution (a posteriori
error indicator)

o In cither case, we need an a posteriori err

* indicator to know

1. when p-enrichment or h-refinement (when the error is too large) or p-reduction or h-coarsening (h stands for At for the
time axis) is needed.

2. which option is more favorable when both p and h options are available. The answer to this question, however is more
difficult and in general depends on the regularity of the underlying problem we are solving. Besides for time stepping
methods, similar to RK method discussed above, the p-enrichment option is often impractical and we are left with only
h-refinement option. Thus, often we do not need to choose hetween h- or p-adaptivity in time.

e a posteriori error indicators: are obtained by the solution of the same time step (or in general local element, update,
etc.) by comparing the base solution and a more accurate solution, The larger the difference between the two two solutions,
the larger the local error.

o Examples for generating more accurate solutions in time, when time stepping methods are used:

1. Step-halving methods or more generally schemes that cover the same time interval by two different resolutions of time
steps. The one with finer step size, clearly represents the more accurate solution scheme,

2. Different (successive) orders of accuracy: The same time step is solved with two schemes with successive orders of
accuracy, The higher order scheme, clearly models the more accurate solution,

e Another use of a posteriori error indicators is the ability to improve the accuracy of the solution / or even local order of
accuracy by updating the solution with a factor of the a posteriori error. The ability to use the error to improve the accuracy
of the solution, requires some mathematical analysis of the time stepping method.

Below, we present some excepts from [Chapra and Canale, 2010] section 25.5 that discussed both step-halving and different
orders of accuracy approaches for formulating an a posteriori error indicator.

Step halving (also called adaptive RK) involves taking each step twice, once as a full step \dl Q/L J—

and independently as two half steps. The difference in the two results represents an esti- lﬁr )
mate of the local truncation error. If y; designates the single-step prediction and y» desig- L
nates the prediction using the two half steps, the error A can be represented as \g ( A ’\\“

) i
(A=ﬁ—ﬁ2 (25.43) AQ

In addition to providing a criterion for step-size control, Eq. (25.43) can also be used to cor-

rect the y; prediction. For the fourth-order RK version, the correction is e
A acod VJ\JK
Nney+ T (25.44)

This estimate is fifth-order accurate.
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