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The same idea can be used with two successive RK methods
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Aside from step halving as a strategy to adjust step size, an alternative approach for
obtaining an error estimate involves computing two RK predictions of different order.
The results can then be subtracted to obtain an estimate of the local truncation error. One
shortcoming of this approach is that it greatly increases the computational overhead. For
example, a fourth- and fifth-order prediction amount to a total of 10 function evaluations
per step. The Runge-Kutta Fehlberg or embedded KKwmethod cleverly circumvents this
problem by us@‘ﬁﬁh“(rrd(fr‘R‘lﬁﬂﬂhﬁﬁﬁif?Wms the function evaluations from the
accompanying fourth-order RK method. Thus, the approach yields the error estimate on the
basis of only six function evaluations!
For the present case, we use the following fourth-order estimate
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along with the fifth-order formula:
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e The ODE is solved by using the fifth order scheme (282).

e a posteriori error estimate is obtained by computing the difference between 4** and 5" order solutions at each time step.

6 (embedded RK4/5) instead of 10 (separate RK4 and RK5) evaluations

4.5.6 Implicit RK methods
e The stability of explicit RK methods can be studies very similar to LMS methods.
e Similar to that case, explicit RK methods are only conditionally stable.

e Explicit Runge-Kutta methods are unsuitable for stiff systems or problems were mainly the first few modes are excited (e.g.,
structural dynamic applications) because of their Small region of absolute stability. That is, stability stipulates time steps
that are much smaller than what is needed from accuracy perspectives for these problems.

e Implicit RK methods with very large regions of absolute stability, on the other hand, can be formulated by having a full
matrix a matrix as shown in the following butcher tableau:

1 ayy ... g

Cg (1s1 ves fMlgg

" by ... by

With implicit RKs all the k's are coupled, potentially through nonlinear equations for f (in terms of y)

e The update can be written as,

Yn+1 = Yh + At Zb.k, where (285a)
i=1
ki = f(tn + Atei, yn +_MZ iik;)s 1<i<s (285h)
J=1
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1. ¢; and b; are set to the quadrature points and weights, respectively, in the Gauss quadrature formula in the evaluation

of polynomials on [0 1],

1 .
P(z)dzr = b P(c;) (286)
for polynomials up to order 2s — 1.
The numbers a;; can then be chosen so that the method has order 2s, and is A-stable.
e For example, the butcher tableau,
33— 3) 4 13(3—2v3)
13+ v3) || 5B+2v3) :
1 1 -
3 3 (287)

defines a 2-stage (s = 2) A-stable method of order 4.

e Implicit RK methods are rarely used due to the following reasons,

Unlike explicit RK methods were /&, could be solved in succession (k; = 1,...,s), for implicit RK methods /. must be

solved simultaneously.
That is, if we solved an 1
of size for each time step!

This can be a huge drawback both from computational costs and memory perspectives
the solution can become prohibitive as we need to solve now a

dof MDOF system with an «-stage implicit RK scheme, we need to solved a coupled system

is nonli
1= for each step update!
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e For these reasons implicit Runge-Kutta methods cannot compete in efficiency with the
(which are a group of LMS methods with very large .\hso]uto stability region), and
stiff systems of ODEs.

Introduction 366

5 Mathematical analysis of time marching schemes

Introduction: Convergence, Consistency, and Stability
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5.1 Introduction

An informal overview of these three important topics (before discussing them for different methods and time integration schemes):

e Convergence: The numerical method convergence to the exact solution of the underlying problem as the relevant grid sizes
decrease and/or interpolation degree increases. This is an analysis limit type argument, meaning that we can make the
numerical solution as close as we want to the exact solution of the underlying equation by choosing small enough grid size(s)
and /or interpolation order.

The concept of the underlying equation is very important. For example for a time integration scheme that solves an FEM
discretized equation MU + CU + KU = R consistency refers to capturing the analytical solution of the underlying ODE
MU + CU + KU = R not the PDE that the FEM derived ODE MU + CU + KU = R is based on. To converge to the

exact solution of the underlying PDE: e.g., p»l“'“'_‘ E ‘ir'_‘ = q for 1D elastodynamics (E is constant), we need to let spatial

grid size h — 0 so that the exact solution to the ODE MU + CU + KU = R is close enough to ;)4-1—,- - E‘l'i % = ¢ then
use small enough time step At so that the time-marching based numerical solution of MU+ CU+KU=R s (lu.scd to its
exact value. Finally, by using triangular inequality, we can argue that for small enough h, At the numerical solution to the

ODE MU + CU + KU = R is close enough to the exact solution of the PDE p.—l%%{# - rl{;“r =q.
=0,

3“”“\\)&\& N\U 3~</\) — Q( U)K — _— 'Q(/\/W
mad g
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J/

KU = R (where only At — 0 is needed) or the underlying PDE p.4%;§‘— EALy - = q (where both At, h — 0 are needed).

d=z
Convergence rate: Is the rate in which the error between numerical and analytical solution goes to zero. For example for a
method that the error is O (h?) + O (At*) we call th convergence rate in space (h) is p and in time (At) is s.

---- Consistency
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which noting E/Z = Z/p = \/E]p = ¢ we have,
SpHl—Sn 4 % {Z(Vp =V )+ (S +50_1—250)} Stress update using Riemann fluxes (113a)
Vol _ym g -2- {—;—- (S —Sh_)+ (Vo +Va_, —2vn } Velocity update using Riemann fluxes (113b)
e We observe that compared to update equations with average flux option . has the additional terms in red.

e To better understand what equation represents, we write in FD form (by multiplying (112)) by -,';

Satl—Sp oVl —Va., heShi+Sh, - 252

3 2h 2 h2 =0 (H14%)
Vptl_ym 18P, —-Sh_y heVR  +ViR_ -2Vn
m m = m vyl m m m = }
k P 2h B B 0 (114b)
. FD equations approximate the equations,
St+(—E)vz — Dys o =0 (115a)
v, t+ (—%)s‘, — Dpv e =0 (115b)
e We observe that compared to (100) the diffusion terms with diffusion coefficient,
I .
Dy, = '?( Numerical diffusion coefficient (116)

are added to both equations: (s, — Dps ., and v,t — Dyv ,.).
e Here are some points about the added diffusion terms:

First, compared to average fluxes these fluxed are obtained by solving the exact fluxes on the cell interfaces.

he

— The diffusion term tends to zero as grid is refined: Dy, = 5= = 0as h — 0.
When h is large the diffusion terms further stabilize the solution by damping solution oscillations.

e Consistency: Consistency is a concept that is relevant to step-by-step advancing schemes. This is particularly to any time
marching method that advances the solution one time step at a time. Consistency is an easier condition that convergence and
only requires that ONE time advance step be “consistent” with the underlying exact solution. It basically requires that for a
sufficiently smooth exact solution from time step t,, to t,,,, if both exact and numerical solutions start from the same initial
condition at t,, the truncation error which is the error at the end of step t,,.; between the exact an numerical time integration
scheme goes “sufficiently fast” to zero. This “sufficiently fast” will be quantified in the context of different method.

Consistency condition is a much easier condition to verify than convergence as it includes only algebraic operations. It also
deals with once (time) advance step / local truncation error vs. total solution (e.g., final solution time) / and global error
which is used in convergence analysis. We will see that consistency is one of the two conditions nused to prove convergence.

e Stability For a (time) advancing scheme stability requires that the solution at a time T is bounded by the solution at the initial
time with a factor Ct which only depends on the given time T not the time step At. For a stable underlying PDE/ODE
(where the physical solution does not blow up in time), stability requires the numerical solution too does not blow up in time.

o @d

"
Stability for dynamic problems K\ \)m } v Q% >

Some notes on how these concepts are related:
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e Lax-Richtmyer equivalence theorem in FD states that for a consistent FD scheme convergence and stability are equivalent:

Consistency = ( Stability <«  Convergence ) (288)

e The way this theorem is used in practice is as follows:

Consistency and Stability = Convergence (289)

because eventually we want to have convergent numerical methods.

However, the proof of convergence is very difficult as we need to consider arbitrary initial and boundary condition and
using analysis tools show that the limit of numerical solution as the grid resolution goes to zero (and/or interpolation
order increases) the numerical solution tends to the exact solution.

The Lax-Richtmyer scheme shows that if we can prove the easier conditions of consistency and stability, which are
generally more straightforward and require simple algebraic/arithmetic operations, we prove convergence.

Various form of similar theorems exist with other numerical methods, e.g., FEM, FV, DG, etc., where solution is
discretized differently in space, yet the same conclusion is made for the dynamic solutions in time: consistency +
stability = convergence.

The proof and discussion of consistency and stability will be the focus of this section.

We will observe that the behavior of local truncation error in consistency verification also determines convergence rate!
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5.2 Analysis of direct time integration methods (for FEMs): A sample analysis

Consider the hyperbolic MU+CU + KU R and parabolic (or two/multi- ﬁold first tcmporal ordor roprcscntanon of a hyperbolic)
MU + KU = R n dof ODEs from (226). The analysis of time integratic ) T g

s the following steps:

1. Modal reduction to SDOF: We first reduce MU+CU+KU = R or MU+KU = R to n SDOFs in the form i wi+wir =

f(t) or &+ Az = f(t), respectively; cf. (229). We show that the afalysis of the underling matrix form ODE reduces to the
analysis of n SDOFs,

2. Stability of SDOF: For the SDOFs we analyze their stability based on the time step At and SDOF parameters &£, w (2*%order

ODE), and A for all modes 1 to n. If conditionally stable, the maximum time step At is chosen as the minimum of all
SDOF time steps.

3. Consistency of SDOF: We show that local truncation error 7(t,,) is O (At*), for s > 0. This is only based on analyzing the
numerical error for one time step.

4. Convergence of SDOF: Using consistency and stability results, we prove the convergence of the time integration scheme and
show that the temporal convergence rate is k.

Some important considerations are:

e Worst SDOF system (i.e., highest n natural frequency, ete.): Finding the worst SDOF that gives the lowest time step (for

conditionally stable methods) and in general for error analysis itself is computationally prohibitive; it requires a complete
modal analysis which is expensive!
Fortunately, a simple analysis shows that for example for a second order temporal PDE, the highest natural frequency is
smaller that the worst case element which is generally the smallest element in the domain. So, in fact, we do not need to
solve for an n dof FEM model’s modal parameters! We can use the worst case element parameters as conservative estimates.
This is the practice for first or second order ODEs discussed above.

e Dissipation, dispersion, and other errors: One important consideration is how much the amplitude of moving waves decreases
or basically energy is dissipated with a stable time integration Scheme. Equally important is how the period (or frequency) of
a periodic moving wave is modified by the numerical time integration scheme. The latter error is called dispersion or period
error. Both errors play important roles in the overall accuracy of the solution. We also comment on some other aspects of
numerical error, i.e., features such as overshoot and undershoot.

Analysis of Generalized trapezoidal rule (a-method) 373

e We briefly repeat some material from §4.2and complete the analysis of generalized trapezoidal rule.

From we consider the solution of an n dof first order ODE obtained by FEM spatial discretization: Md + Kd = F with
IC d(t = 0) = do.

The update equation for the time t = t,, + At was given by (231). That is, d'» o4t = "‘“:—"n and d» 93¢ = (1 — a)d" +

adnt!, ) -

+ Below we describe how we can analyze the method by reducing it to n SDOF problems.

/4, | .
T by

< =
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A
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2.1 Generalized trapezoidal rule: Modal reduction to SDOF
e We perform modal analysis for the first order ODE below,

Md + Kd =F —5 Modal eigenproblem

f& B >§V AQ} KQ ‘ ‘i;};:-»o TTE S—

O0sAM=sAM= =2,
MM S WM. = 5. (othonormality) ——>
DOQS WKW, = AlS. (no sum)

similar 1 srder f[; \ll CU + KU = R we observe modes 1, are M-orthonormal and K orthogonal with
,iy,um,_a‘ o A diion o =

% / %W _ W o N0 SV sl

Claim: Time marching of the MDOF with Delta T is equivalent to time marching of all the SDOFs with Delta T
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o Time integration scheme directly applied to Md + Kd = F is equivalent to integrating SDOFs with the same integration

scheme.

e This can be demonstrated for generalized trapezoidal rule:

o Equation (294)(e) is generalized trape-
zoidal rule applied to Md + Kd = F
premultiplied ¢ where

e d, and d,,;, are expressed in terms of
modal components.

e Now, using M-orthonormal and K
orthogonal (with diagonal values %)
properties from @ MDOF gener-
alized trapezoidal method for MDOF
system in (294)(e) (premultiplied by
¥q) results SDOF generalized trape-
zoidal method for SDOFs in (;!,).

Meq
d,= D duabn

oy
dy = z Ayt i

dyy = W Md,
dur vy = W] Md,.,

et
2 [dysrom W (M + aAt KN,
m=l

= dymW] M — (1 — @)AK), ] = AtW]F,.,

Fuia= (1 - a)F, + aF.,

(a)

(b)
(c)
(d)

(e)
()

(1 + adtMderin = (1= (1 = a)AtMMduy + AtFran () (204)

e Thus, solution of MDOF Md + Kd = F with generalized trapezoidal rule reduces to solving the following SDOF equations

again with generalized trapezoidal rule

(1 + aBiX)dasy = (1 = (1 = a)AtA). + AtF.., (temporally discretized
dy given SDOF model problem)
(295)

e The same can be shown for basically any ODE time integra-
tion scheme.

e Basically, it does not matter if we first do modal decom-
position, then apply generalized trapezoidal integration to
SDOFs OR first apply generalized trapezoidal integration
then modal decomposition, as shown in the figure:

For this reason we define the following for MDOF solution

d,, = Numerical vector solution for MDOF at time step t,,

Md +Kd=F
d(0) = do

"

d+ Nd=F
d) = dy

Error analysis, stability analysis, ete. of MDOF also reduces to the analysis of SDOF.

d(t,) 3 Exact vector solution for MDOF at time t = t,, (evaluated at same dofs)

4 S dey

e(Nty,) - ‘In(/)

Similarly, we define numerical, exact, and error values for SDOF number /

l’(/)(',,)

discretization

Error vector for MDOF numerical ODE solution for relative to exact solution

M + altK )y,
= (M = (1 = a)AK)d,
+ AtF..a
d, given

[

(1 + aAA)d,,,
= (I = (1 - a)AtX)d,
+ AtF,,,
dp given

(296a)
(296b)
(296¢)

(297)

e We observe that MDOF error norm squared with kernel M is equal to the sum of squares of individual SDOF errors:

DI AMEAN -
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@/D\f\\ N\ Q@V\\ - m () = :..2-. (et 9 M (e (1)) T
\\ Q(W\\\M a l%} e (ta )it ] M b,

= > eolt)ew(t)bn  (orthonormality)

N QQ\X\\ L LSW\\ -gl(ewu.»*

)/L (ol N SANERY = (298)
o Thus, the convergence of MDOF system (with M kernel) which requires e(t,, )" Me(t,,) is equivalent to individual convergence
of SDOFs:

e(t,,)T.\[e(t,,)—o 0 if and only if eq(r,)— O for each /¢ {l. 2, .,.neq} (200)

e Finally, given that M is positive definite convergence of norm square with kernel M is equivalent to L2 convergence of e(t,,):
e(t,) Me(t,)— 0 if and only if e(r,) — 0 (300)

e L2 Convergence of NIDOF error is equivalent to convergence of scalar SDOF =

e For convergence of MDOF we only need to investigate convergence of all SDOFs.

5.2.2 Generalized trapezoidal rule: Stability of SDOF

e As we observe, solution and even convergence analysis of MDOF Md + Kd = F reduces to the solution and convergence
analysis of SDOFs.

e To analyze the stability of the method, we first study how the exact solution behaves for a given modal value A*.

( J+A*d-§ A —
dae) = oxp (~Ras — ) (T, J(b - X\\“r\\ C Lo

e which has the solution:

(302)
The exact numerical solution is stable basically when \* > 0:
Ll ¢ exac mumeric SO (8 stable basicall) ](l\_——l /(\AQC/K
Id(’n‘l)l < Id(’n)l' A. > o
d = n/y .
(tasr) = d(2,) X=0 (303)

e To study the stability of the numerical method, we find the update of (301) based on a SDOF generalized trapezoidal rule;
of. 299(g),
(1 + alr Md,., = (1 = (1 — a)At X)d,

(304)
o Which is,
1—(1—a)AtA i i
dpy1 = Ad,, where A = BTV Amplification factor (305)
o which from we observe,
d* = A"d" (306)

e Clearly, numerical method is stable iff A < 1.

e now given that the exact solution is only stable for A" > 0, we are looking for conditions in which the numerical method is
convergence for the same A" for which exact solution is stable.

¢ That is, we consider the condition \* > 0 and look for At for which A < 1:

1— (1 —a)At) R
el Sl i P ‘
T+adth =1 (307)

—_—

4] <1 = -1<
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a < % Conditionally stable At < g ",‘.

which results in the following conditions: (308)
a >+  Unconditionally stable
- Enact a0
— AGAOR
“w, Amphificet o ‘scv
Summary: Stability  for  the
generalized trapezoidal methods
A
. 10— @A
np factor: A X
Stabuity requirement: |A| < 1 for A' = AL (= maximum eigenvaluc)
Unconditional stability: a = §
- ) 2
Conditional subility: a < §, Al < m':
Amphfication factor for typical one-step methods
e The maximum stable time stable can be chosen as follows
1 fas 21 .
azg = any At Unconditional stability (309a)

All is left is to prove that SDOF is consistent

Before that a few points about stability
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1 2

e Conditional stability (309h)
max;(A7) 1 — 2a

1
>z = At < Al =

e where max;(\/') is the maximum modal eigen value obtained from modal analysis. The maximum value is chosen because
smaller model eigenvalues result in more loose time constraint.

o In practice it is difficult/computationally expensive to actually compute max;(A}') by a modal analysis.
e Instead, we can use
A" := max, ;(ALh) = maximum of all element’s (e¢) maximum modal eigenvalue (index (i) in element) (310)

which is the maximum modal eigenvalue that any element can produce.
This value is very easy to be computed and values are already obtain for various element types in the literature.

A" It only depends on element size (geometry) and material properties.

One can prove [Hughes, 2012, Bathe, 2006],
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e The same process can be applied to other time integration schemes.
e Later, we provide analytical formulas for A™ for some types of elements.
e As a note, we observe that,

P

Al o ; Simple hyperbolic PDE, e.g., u, — ¢?V.Vu = 0, ¢ = wave speed (314a)
;“]][I

D

Al e o Simple parabolic problem, e.g., u, — DV.Vu = 0, D = damping coefficient (314b)
2

min

where fiy,;, is the minimum element size. For simplicity here it is assumed the domain is covered with the same element
type. For more general cases, we need to consider the maximum eigen-frequency of all elements which may not necessarily
correspond to that of the smallest element.

e From (313) and (314) we reach to the same conclusion we had reach for simple hyperbolic and parabolic PDEs with FD

methods:

huwin  Simple hyperbolic PDE, e.g., uy — *V.Vu =0
At C (315a)
hi;. Simple parabolic PDE, e.g., u, — DV.Vu =0

where C' depends on material properties, e.g., ¢, D, and the particular form of time integration scheme.

e The stable time step for more complex dynamic systems, e.g., Tu,; +u, — DV.Vu = 0 will be discussed later.
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