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Generalized trapezoidal rule: Consistency of SDOF 380

5.2.3 Generalized trapezoidal rule: Consistency of SDOF
dyiy = Ad, + L, = [,x,,., —Ad, —L,=0
(1—a)fn+afnq
Ln = At 1+ aAth
| — l — (1 —a)AtA
- 14+ aAtA

Consistency error in general measures if the solver is "consistent" with the
underlying PDE / update equation as more accurate solutions are considered
(delta t, h -> 0, p -> infinity)
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For consistency analysis, we simply insert the exact solution (or a harmonic sotugion that is exact for the PDE) in the discretization update equation.
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1. We want to analyze truncation error for alpha-method
2. Use this knowledge to analyze the convergence of the method
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5.2.4 Generalized trapezoidal rule: Convergence of SDOF

e Remembering Lax-Richtmyer equivalence theorem for FD methods, we asserted in (288) that for a consistent method stability
and convergence are equivalent.

e As shown in (289)), in practice we prove the convergence of a method by establishing that it is both consistent and stable:
Consistency and Stability = Convergence

o Below we prove this for a SDOF problem with A* > 0 for a general 1-step time integration scheme in the form of .

e Let t,, = nAt be fixed but At be allowed to vary. Assume the time integration is,

1. stable, i.e., |A| < 1.
2. consistent, i.e., there exists a k > 0,¢ > 0 such that |7(t)| < cAt* for all t € [0,T); cf. (318a).

Then the method is convergent (e(t,) = 0 as At — 0) with the rate of convergence k.

Proof:

e First we want to form an update equation for the error from time step t,, to t,,:

dpiy1 — Ady — L, =0 of. (316a)

d(t,+1) — Ad(t,) — L, = Atr(t,) cf. = e(tnyr) = Ae(t,) — _\r.r[r,,;‘

e(tnset) =dnsy —d(tnsr), e(tn) =d, —d(t,) Definition of error; cf.

(322)
e By using n — 1 instead of n in equation (i.e., previous time step) we obtain,
e(tn} = Ae(tn—l) - Af.T(t"_]} and knc-wing e(trﬂ—l) = Af.‘(f") - dt-f(tn} from 1' =
eltnir) = A%e(t, 1) — AtAT(t, 1) — Atr(t,)
e By repeating this equation to eliminate e(t,,—;) from the RHS (by writing for n — n — 2) we obtain,
e(r'n+l ] = A:jc(r'n—?) - AtA2T(tn—2) - AtAT({n— I) - Atr”n)
and so on,
e So we would have,
e(tus1) = A" e(to) — Aty A'r(tn—) (323)
t=0

e But e(ty) = 0 because we initialize the time marching scheme at the first step with the exact solution, i.e., IC.
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o Expressing (323) for time step t,, instead of t,,,, and taking its absolute value we obtain,

2 Arltr-) | (a)

lelr,)| = Ar

SAI:Z“P"('--I--" (b)

=l

S A |1laio)|  (stability) (c)
-0

=[1, max | 7(1)| (€[0,7) (d)

e fcomiany) () (324)

e We observe,

1. A stable SDOF one step time integration scheme is convergent iff it is stable and consistent (the converse, i.e., convergence
= stability and consistency is trivial; we only showed that stability and consistency proved convergence). Compare this

with slightly different versions (288) and (289).
2. We observe, rate of convergence is the same as k in the definition of consistency in (317)) (d(t,+1)—Ad(t,)—L, = At 7(t,,)).

3. The extra At that we introduced in the definition of consistency condition on the RHS in (d(tnsr1)—Ad(t,) =L, =
Att(tn)) is needed. Otherwise in (cl) we would have got e(t,) < nmax|7(t)|, which clearly makes the RHS unbounded
as we can have a very small time step At so that in ¢, = nAt, n — oo.

4. The bound on the error term in (324)(e) can be written as,
le(tn)] < Ct, Afk, for a fixed t,, = nAt, where C, =et, (325)

we observe,
(a) We observe (', in general depends on the time value t,, and can grow with the the observation time t,,.
(b) But for a fixed time t,, the error is bounded no matter what time step value (assuming stability is satisfied) is used!
(c) So, the error constant in general depends on time in convergence analysis, but must NOT depend on the time
step size At.
SDOF to MDOF convergence rate:

From we have,
e(tn) "Me(tn) = 3 (e(s)(t)” (326)
i=1

where from (325) we know that all SDOF problems i = 1 to n have convergence rate of k for their error ¢ (i} (1) if their
local truncation convergence order is k and stable time step is used for all of them.

— As mentioned before, if time integration is conditionally stable, by using the most stringent time-step (from the highest
Al we ensure that all SDOFs are stable.

— In addition, if we directly integrate the underlying MDOF with time step At it is equivalent to integrating all SDOFs
with time step At.

— Given that all SDOFs have the same convergence rates tmt potentially different constants (Cy, ), we bound the RHS of

from in the form, \Q.\ f\Q B+ <

Z (Ce, ) At = C/,z“‘dt?\ where
e —

e(tn)™Me(t,) = Y

(327)

Lae(ta) N Veltn)eltn) € ——/e(tn)TMelty) < —t Atk (328)

min min

— but we know,

If individual SDOFs converge with order k, the global system converges
with order k.

where m,,;,, > 0 is the minimum eigenvalue of M. How do we get the first inequality in and why m,,, > 0?
— Basically L, norm and norm with M are equivalent =

~ from @ we observe that MDOF Md + Kd = F error vector e(t, ) converges with order k in both L2 norm and norm
with M kernel provided that the integration scheme is stable and consistent with the rate k.
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5.3 Stability analysis of SDOF problems involving matrix update equation
e In general we can have update equations from time step t,, to time step t,,.; which has an update equation of the form,

e As mentioned before, stability analysis of a MDOF problem, reduces to the stability analysis of its modal SDOFs:

MDOF = SDOF (329a)
MU+ CU+KU=R ¥+ 2wi +wir = f(t) (320b)
MU+KU=R i+ Ar = f(t) (329¢)

o The stability, consistency, and convergence of (329¢|) was discussed in in the context of generalized trapezoidal method.
e Herein, we analyze the stability of time marching methods from by analyzing their corresponding SDOF from (329h).

In the analysis of higher order ODEs, multi-step method methods with more than 2 steps, and many other instances we deal

with update equations of the form, ——_
|
msm (330)
N —

where 3t X and ‘X correspond to generalized vector update values for time steps t,, and t,., and

e A is the matrix amplification factor.

Examples of ‘X are

1. Value and subsequent time derivatives of = in (329b): ‘X = ['z ‘¢ ‘#]. Examples be from Newmark and #-Wilson
methods.

2. Value and previous step values of z in (320B): ‘X = [+ tx =3¢ ...]. This will be the form of *X for LMS methods.

o In either case, since ' X is a vector, unlike (316a)) (d,.+1 = Ad,, + L,,) where the update equation was for a scalar variable d,, ;1
and involved a scalar amplification factor 4, in (330) A is a matrix.

e Applying multiple times we obtain,
el = AM Y 4 ATTLEYE) 4 AL 4+ L
+ AL(FO-Davy) 4 [ (ra-Daeyy (331)
e For the moment, by assuming the force oper =\ ' - &7
i ¢ (332)

+ | o - W
RN f okt g e ralheby
SRS -

e The stability of the time marching scheme requires A™ does not blow up.

e For the moment assume A is diagonalizable: A = PJP~! (P = [p; p2-- Py is the matrix of right eigenvectors p; and
J = diag(a,,--- ,a,,) and a; are the corresponding eigenvalues. The matrix A is m x m.

e In this case, we have

for diagonal J (333)
o Recalling the definition of spectral radius
MA) = max{|a;| i € {1,--- ,m}|a; are eigenvalues of A} (334)

—gw\/ o éKQCS@mO\\\/Za\\:\Q AALIEN ?Wé‘./‘i

DC Page 7



Stability analysis of SDOF problems involving matrix update equation 404

e Clearly, from the definition ) the stability condition for a diagonalizable update matrix A is,
Update by diagonalizable matrix amplification factor A is stable iff  p(A) <1 (335)

e Now, what happens if A is not diagonalizable and when A is not diagonalizable: A is not diagonalizable iff

1. Eigenvalues a;. with eigenvalues with n! > 1 algebraic multiplicity.

2. Smaller geometric multiplicity nff < nj

Basically, the matrix A is diagonalizable if it has repeated eigenvalues whose geometric multiplicity is smaller than algebraic
one. Clearly, if A has distinct eigenvalues all algebraic and geometric multiplicities are are one and it’s diagonalizable. Also,
if it has repeated eigenvalues but with the same geometric and algebraic multiplicity that is not a problem either. A good
example is a multiple of identity matrix al which clearly is already diagonal.

So, what can we do if A is not diagonalizable?

Can we still write A = PJP~! = A = PJ"P~! for J being a more manageable matrix than A?

e The answer is yes. The transformation is done by Jordan normal form.

e Any complex matrix A can be decomposed in the form,
for arbitrary A: A= F@)". where J is a Jordan normal form that is similar to A by P (336)
————=
e where Jordan normal form J is a block diagonal matrix of the form,

W= <=

W\Qk N\
J

where each block J, is a square matrix of the form

(337)
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e an example can be seen below,

\
T

JN =
. —
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e As an example consider,

-1 -1 3 0

1 1 -1 2

L J

Ty o
()@ 0 0
there is a P matrix: A = PJP~! such that J =

> 4 w@w Tulien
0 0 0 \/)\/\ @(ﬁ@‘m v —r

e So, the question of stability of update in (332) *+"3¢X = A™*X.

e We have

A=PJP! = A" =PJ"P!

e So the stability of update (332) reduces to the behavior (boundedness) of powers of Jordan block diagonal matrix J6n.

e We can have the following statement for stability of\ o update:

Spectral stability: 6\ E & & \o%r

thndty — AnX is stable iff p(A) < 1 and if A is not diagonalizable eigenvalues a; with n{!

> n¢ satisfy |a;| < 1| (338)

o The condition that for eigenvalues a; with n! > n¢ we require |a;| -

i

1 becomes apparent from the example below,

(339)

which correspond to a 2 x 2 A with n{! = 2, n{’ = 1. Same argument can be applied to n! > 2 and m > 2 as J" only involves \&,QK
the powers of the Jordan block diagonal matrices similar to the one in (339).
e There are three cases:

1. If @ > 1 both diagonal and off-diagonal (J,,) values blow up.

— This instability is called exponential of “explosive™ and very fast shows up in the numerical results. \
The growth of this instability is of the form O (a").

2. If a < 1 both diagonal and off-diagonal (.J,,) are bounded (and in fact approach zero as n — o). \‘_\/_\__/
_—

™

A | o Lol =
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3. If a = 1, diagonal values are 1 but off-diagonal value J,; = n weakly blows up:
This instability is called weak / algebraic and unlike exponential instability may not be easily detected in numerical
results.
The growth of this instability is of the form O (n*®), s = ma_\',(u-" - ui"), Compare this with much more severe
exponential instability in case 1: O (a").

o In the discussion of the stability of various methods that have a matrix amplification factor A we refer to (338).

?»e (& OX 3)\0\05\\\

sy < AL
i 9<M = A st \ee Am @C‘W\\\z@\o\a

Stability analvsis of LMS methods 111

5.3.1 Stability analysis of LMS methods

e General first and second order linear ODEs applied to a vector y can be represented as follows, (cf. (240) for general nonlinear
first order expression of an ODE),

(50K Gy s3x)

V=[fly.v.t)=Giy + Goy + H(t)

Linear first order ODE (340a)
Linear second order ODE (340b)

e When a k-step LMS method is applied to an ODE y,, . in terms of y,,, V-1, - , Vo ks1-

o Formally, the expressions of an k-step LMS method app]i{.d to linear firgt and second order ODEs in (340) are,

i = £ A)
Z {@i¥ns1-i + AtBi[Goyns1—i + H(t,.+| )]} =0 LMS applied Linear first order ODE (341a)
i=0
k
Z {Lr.'_\«',‘__]_, 4+ AtBiG Yni1—i + .Jl‘z‘);[Cn_\r'nH_,- + H(f..+1_,-)]} =0 LMS applied Linear second order ODE  (341b)

i=0

e For the use of LMS methods, we focus on either second order MU + CU + KU = R or first order MU + KU = R MDOF
ODEs.

e As mentioned several times, for the analysis of these MDOF problems, we analyze their stability and convergence properties
by reducing them to SDOFs,

MDOF SDOF Parameters in

MU + KU =R \_%f - el H!)_f(r) (342a)

MU+ CU+KU=R _,% F + 2w + ' = f(t) G, = —2¢w, 2 H(t) = f(t) (342h)

@J[d.[—t\l’n-], + f('1|+141)1} = o
[3
iZ{u.r,.-l—.—2_\rd.swm-,+_\r%.{--"-’r,.+|-.+f<r..+1_. MS for & + 2wi +w’s = (343b)
1=0

LMS for & + Az =0

(343a)
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e Equation (343) for f(t) =0 can be written in the short formy,
— AtB;A LMS for# + Ar =0

ll'
CoTns) +C1 Ty +C1 Ty 1+ +CkTp_ps1 =0 wheye c =
» a; — 2AtBiw — At yiw?  LMS for # + 2wi + w?zr =0
(344)

e We can express ([353) as the following update equatio
"IY

(LSS~ J A A TP g
\ 0

. A% f\~\<
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