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From last time we had:
e For stability analysis, for simplicity of analysis herein, we assume f(t) = 0.

e Equation (343) for f(t) = 0 can be written in the short form,
1 &

a; — Atg;A LMS for & + Ar =10
CoTnil +C1Tn +C1Tpy +* + CkTpps1 =0 where ¢; =
= a; — 2At8,6w — AP~vw?  LMS for # + 2fwi + w?r =0
(344)
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o In this case from (353)) we can write the update for X, :
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again ¢; depend on At and parameters of SDOF parameters and time integration model and it parameters.

o It can be shown (will be a HW problem) that the eigenvalues of (347 satisfy,

a; is an eigenvalue of A & (348a)
Iv; Av; = a,;v; (no summation on i) = (348b)
A [ Ci G136
—aF +éa +Goal "+ + & 0 & (G=—-——cf (3:)3[)) (348c)
Co 3
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l'“(lt - t'luyk BN E ('v_»u:"" +-+exg=0 (348d)

Eigenvalues satisfy the characteristic equation above. They must satisfy (*)
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e Accordingly, the stability analysis of LMS scheme is as follows,

a;| <1, if a; is not n-p(-:nml 1::,‘ = 1) otherwise |a;| < 1, where (349a)
a; are eigenvalues of A, i.e., roots of r..uf‘ + r,u,‘ it =0 (349b)
Example of this process:
5.3.1.1 Stability analysis of LMS methods: Central Difference method
o Consider central difference method update equations,
i+ 26wty + W = f(t) (350a)
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o By direct plugging (350b) and (350c) into (350a) we obtain the following update equation,

1 tw)ry, iy + (=24 (Atw)?)z, + (1 — EAtW) T, 1 =0
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e We obtain the same equation (351) with a bit longer approach by formally obtaining the values o, 3;,v; for LMS method
applied to the second order ODE (350a)).

“ |!itlh the expressions of a 2-step LMS method applied to linear second order ODE in (343b) (Zf,@il.)—?@w‘fn $1-i—

2api1-i} =0 are (f(t) =0),

1 # (in (350c)) (352a)
1 1
Bo=—5 Bi=0 fa=3 & (in (350b)) (352b)

9
/\ : -
@ m=-1 ha=0 x (inserted for t(t,) in (350a)) (352¢)

e If both 3, and 7, were zero, this method formally would have been explicit ¢f. [Hughes, 2012] §9.3.2.
e The method, formally is not fully explicit because 3; # 0 involves values for t,, .

e As we will see the method still is only conditionally stable. The main cause is 7o = 0.

e Based on the values a;, 5;,7:,1=0,1,2 in (352) the update equation (353) is written as,
cp =1+ EAw

CoTn+1 + C1Tn + C2Tn—1 =0 where ¢; = a; — 2Atfifw — At*yw? — ¢ = -2 4 (Atw)? (353)
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where A7 := Atw normalized time step = (355a)

_ t _1-&At
1464t 7° 1+€6At

2 —
o 2-At £ARAT —4(1-£2)
ap=A £ \JA} - Ay = 2[1‘:-‘3) ; \O\\)GL\ < \

e That is, |a; 2| < 1 and if they are equal (i.e., A} = A,) |a;| = |az| < 1.

e Clearly, it is difficult to obtain stability condition by directly checking the absolute values |A, 5.

e A theory, discussed in the next section, shows that for stability we must have,
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e That is,
2 2 F 2
Central difference time integration for SDOF 7 + 28w +wr =0 is stable if At < = (358a)
o o _)
Central difference time integration for MDOF MU + CU 4+ KU =0 is stable if At <
2
or more conservatively & conveniently At < — (358h)

Recall that w!" is the maximum element level natural frequency which can be easily computed.
max;(w]') is the maximum frequency of the MDOF problem which often is not computed.

Since w! > max;(w}') we can conservatively and conveniently use it in estimating stable time step of conditionally stable
methods; ¢f. (311) and §5.2.2]
One very interesting aspect is that the stable time step is not increased by increasing € which typically is the case.

5.3.1.2  Stability region for a 2 x 2 update equation (with real coefficients)

o Consider the update equation for a size two X with real values (cf. (347) for a general size m X),

3 ; An A
Xas+1 = AX,,, where A= (359)
Ax Az
e The eigenvalues of A satisfy,
a*—-24,a+ A, =0 where (360a)
1
A, = -trace(A), trace(A) = Ay, + An first invariant of A (360b)
As = det(A), det(A) = A} A — A12A49; second invariant of A (360c)

e On the other hand, in many instances we directly reach to a second order polynomial of the form (360a)). See for example

(355a)).

e In this section we provide conditions in which the roots of the second order polynomial in (361) satisfy |a; 2| < 1or |a12| <1
and provide the full analysis (including when the coefficients A; and A, are complex in §6.4.6

—

e In cither case, whether the polynomial is directly derived or is from a size two X,, update vector roots of (360a) must satisfy
a stability condition which is of the form (338].

e For the resulting second order polynomial stability condition reduces to,

lay 2] = ’.—l, + AT = .F._r’ <1 ifay#ay thatis A} # A,

a® —2A,a+ A3 =0 correspond to a stable scheme iff
|ay 2| = |Ay| _'l ifa; =ay thatis A} = A,
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e Another important condition is whether the roots are real or complex (in complex conjugate pairs):

ay,z are complex iff .-lf < As (363)

o Having complex conjugate roots can damp out high frequency content in various time marching schemes of the solution which
is often desirable. This will be discussed further for Newmark methods.

e Overall stability region, and stability region with complex conjugate roots are shown below.

Ay

excluded

Stability Stability region with
region complex conjugate roots

1) \ - A,

5.3.1.3 Stability analysis of LMS methods: Houbolt method

e We previously discussed the 3-step LMS Houbolt method in §4.3.2 with the FD operators: . ;&
AR 4 2w g 4 o ,-.nx,rwu,.\% L'\'“"’E)\/\-

Ay = A_l‘i(z roNx -~ S5'x +4 =Ary v-!-hx)

warg = L (g ety - g g 4 9 atg — g2y

6Ar (364)
# which results in the update equation,
e ERNT RN
'x =A] "¥x | + L"Y whee A= w “
—ary 124y 1 0 0
0 1
2 1€ ' @ &
- . - w?
8_(m*m’+3mm+')' K=ua L=l
0 (365)

» Noticeably p(A) < 1 for all At meaning that Houbolt method is unconditionally stable, as mentioned before.

5.3.2  Absolute stability, A-stable methods

5.3.2.1 Introduction: Properties of analytical solution

We consider the pth o(r;Per ODE j ~\ Q
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e We first discuss how the solution is o ed for homoger > (f(t) = 0) and later comment on the solution of (366).
e Considering g f(t) = 0 and letting u(t) = we obtain.
u(t) =e™, f(t) =0, so (366) _I AP =1 AP ’~~v>ult\+u..=n] (367)

We obtain p roots > from the characteristic polynomial.
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o If the root i is repeated m; times, the general solution corresponding to this root is P;(t)e** where P; is an m; — 1 order
polynomial.

e So, the solution is,

dPu dPtu du .
rr‘,'— +a, 1T+---+ul?+rrnra[f}=[} = Jrlf]:ZHU]f'\:r (368)
i=1
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e To study the houndedness of (369) let,

A= AR = u(t) = P,(t)r“'"“*"“ = l",(t)(“\"'r‘\‘“' (370)
where AR, \; are real and imaginary parts of A; and 1 is the imaginary number (1* = —1).

: : . i
o Now, the houndedness of u;(t) depends on the sign of AF given that |¢¢| = 1:

M<o Bounded and diminishing, (lim,_,  u;(t) = 0)
/\," =0 & m; = 1(); simple root of (367)) Bounded and oscillatory (the solution oscillated but not tending to zero)

,\," =0 & m; > 1(\; repeated root of @—D) Weakly (algebraically) unbounded: u;(t) algebraically tends to oc as t — oo

A," >0 Strongly (exponentially) unbounded, (lim,_, oo u;(t) = o)
(371)
o So for the (stability) boundedness of the solution to (368) with f(t) = 0 we have,
Exponentially unbounded  If any root has positive real part
Algebraically unbounded  If all A; < 0, but roots with AF = 0 are repeated m; > 1 (372)

Bounded If all A; < 0, and roots (if any) with Af = 0 are simple m; = 1

e Obviously, unstable modes may not get activated for particular 1Cs if their P;(t) is identically zero.

e An important question is if the IC is perturbed a bit, whether the perturbation result in unbounded changes in the solution
as t — oo. This property is called dynamic-stability and for an p'® order linear ODE, it requires the satisfaction of (372).

® The solution of for f(t) # 0 can be obtained by using Laplace transform. The solution will include convolutions of the
kernels of the form (369) and f(t). The details of the process can be found in any introductory ODE book.

o We are more interested in knowing when the exact solution (i.e., physical system) is dynamically stable and afterward knowing
when a numerical method can maintain “stability” in & numerical Séffigmeaning that the solution does not blownp,
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Summary:  Stability  for  the
generalized trapezoidal methods

) 1= (1 — a)Ard*
Amplification factor: A = T vy

Stability requirement: |A| < 1 for A = AL, (= maximum eigenvalue)
Unconditional stability: o = §

2
Conditional subility. a < §, ar < m

Amphficanon factor for typical one-step methods

e The maximum stable time stable can be chosen as follows

1 2 7 R
az5s = any At Unconditional stability (309a)

5.3.2.2  Absolute stability

o Consider the first order ODE,
i-Ar=0 (373)
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e An ODE solver whose update equation can be cast in the form X,, = A" X (A is the amplification factor), e.g., RK or any
LMS scheme, is said to be absolutely stable at a fixed AA? if the spectral radius of A is strictly less than 1: p(A) < 1

for the solution of & — Az = 0 is stable with the time step At.

e Recall that spectral stability (338) in fact A , whereas for absolute stability p(A) < 1.
225 2DSoTute svanity
e To reiterate, t I (1338) is repeated here,
p(A) < 1 and if A is not diagonalizable ,
eigenvalues a; with n! - n¢ satisfy |a;| < 1.

which clearly allows p(A) = 1.

o This means that for an absolutely stable poi : p(A) < 1, the numerical solution definitely d
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e doi g s good as the physics is doing! That's as close as we can

gtt th e properties of the d erlying ODE
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