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Continuing the discussion on absolute stability: -
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e To study the boundedness of qﬁ;l;{)ii let,

> K I ¥
M=ARLl o g(t) = P(t)eN A = pi(t)etiteMt (370)
where AR, ), are real and imaginary parts of \; and 1 is the imaginary number (1 = —1).
e Now, the boundedness of u;(t) depends on the sign of A® given that |r"v"| =1:
/\,“ <0 Bounded and diminishing, (lim,_, . u;(t) = 0)

AR =0 & m; = 1()\; simple root of (367)) Bounded and oscillatory (the solution oscillated but not tending to zero)
AR =0 & m; > 1(\; repeated oot of ({i(jf])) Weakly (algebraically) unbounded: u,(t) algebraically tends to oo as t — o

,\,R >0 Strongly (exponentially) unbounded, (lim,_, o u;(t) = o0)
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Summary:  Stability  for  the

) generalized trapezoidal methods
- =

Stability requirement: |A] < 1 for A = AL (= maximum eigenvaluc)
Unconditional stability: o =3

2
“ondi <4, <
Conditional stability. o < § A mf.

l Amphfication factor for typical one-step methods
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A numerical method (time integration) is called A-stable (absolutely
stable) if its region of Absolute stability covers the entire negative real
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For unconditional stability we work with a particular ODE (lambda is \)\
fixed) and see if delta t is free.

A-stability means for A?%a\mbda delta tis free

A-stable: whatever dynamically stable ODE is thrown at the numerical ODE solver, delta T is free.
Unconditional stability only can be discussed in the context of a particular ODE for which we can say delta T is free (this cannot be generalized to
other ODEs, for example unconditional stability for heat equation (lambda = -5) does not carry over to unconditional stability for undamped wave
equation (lambda = +- i) )
e We are more interested in knowing when the exact solution (i.e., physical system) is dynamically stable and afterward knowing
when a numerical method can maintain “stability” in a numerical setting, meaning that the solution does not blowup.

e Unfortunately, the condition of A-stability is extremely demanding. [Dahlquist, 1963] has shown the following results (known
as Dahlquist Second Barrier Theorem):

1. No explicit linear multi-step method (LMS) is A-stable.

2. No A-stable LM : ﬁ\&W\ N Con, AO

3. The second-order A-stable LMS with the smallest error constant is the trapezoid rule method.
s ________ g

e The result for explicit methods is expected because they are not even unconditionally stable for an equation in the form ]S _G ]\Q\/\Q\
i — Az = 0 for real A < 0. That is, they do not even cover the negative real axis for AAt let alone the negative complex plane A : \
(AR < 0 arbitrary A). K/\)\ \,\ X ¢

e The result for implicit LMS methods, however, is disappointing implying that if we want a LMS method that 100% preserves 1
the well-posedness region of complex plane (M < 0) by allowing arbitrary At we are at most offered a second order of
pieenracy, for which trapezoidal rul has the smallest error constant.

Can | do consider other properties than A-stability?

5.3.1 Stability analysis of LMS methods

o General first and second order linear ODEs applied to a vector y can be represented as follows, (¢f. (240) for general nonlinear
first order expression of an ODE),

v = f(y.t) = Goy + H(t) Linear first order ODE (340a)
V= fly.y.t) = Giy + Goy + H(t) Linear second order ODE (340b)
e When a k-step LMS method is applied to an ODE y,,.; in terms of y,,, ¥—1.°* y¥nks1-

e Formally, the expressions of an k-step LMS me lh« yd applied to linear first and second or(l(r ODE:s in (340) are,

Z {aiyni1-i € AtBNGoYn+1-i + H(t,+1-:)]} =0 LMS applied Linear first order ODE (341a)
=0 ———

k
Z {aiyni1-i + AtBiGryns1-i + .J!:iv,{G.._v,, v1—i + H(th 41 ,)]} =0 LMS applied Linear second order ODE  (341b)
=0
, \i S .
LW N Q} < N\ o~ \/\ ’;O
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\
An example is Houbolt method, if we write the following equation in the form (341a) and find alpha_i and beta_is, we'll see 7 O
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beta_i, | > 0 are zero.

4.3.2 Houbolt method (an implicit LMS method for elastodynamics)

o Houbolt method is a LMS (k = 3) implicit method where the FD stencils for U and U are

. 1
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e These Backward Differentiation Formulae (BDF), which are LMS schemes, can have orders of accuracy as high as 6, yet
covering all negative real axis in their region of absolute stability.
The coefficients are obtained by requiring that the order of accuracy of
the method is as high as possible. i.e.. by making the coefficients ('; zero
in (12.47) for j = 0.1...., k. For k =1 this vields the implicit Euler
method (BDF1). whose order of accuracy is. of course. 1: the method is
A-stable. The choice of k= 6 results in the sixth-order, six-step BDF K
method (BDFG): Ud X

@ 3(5 . .l/n-i-.') t

Although the method (12.50) is not A-stable. its region of absolute sta-

bility includes the whole of the negative real axis (see Figure 12.5). For qu \m\/ (/\./(M S«&M‘]D

To construet useful methods of higher order we need to relax the
condition of A-stability by requiring that the region of absolute stability
should include a large part of the negative half-plane, and certainly that

it contains the whole of the negative real axis.

The most efficient methods of this kind in current use are the Back-
ward Differentiation Formulae. or BDI methods. These are the
linecar multistep methods (12.35) in which 3; = 0. 0< j < k-~ 1. k > 1,
and 3, # 0. Thus,

OpYntk + -+ oYn = h3k ik -
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the mtermediate values. &

= 2.:3.4.5.
k-step BDF methods, respectively:

3Ynio —4Yns1 +y

I I.[/u* } I‘\l/u+'_’ ").’/H—l

25Yn+

137045 — 3004, 1.4 + 300y, .3 — 2001, .9 + T5un 1 — 12y,

referred to as BDF2, BDF3.
stability are

BDF4 and BDF5.

also shown in Figure 12.5

we have the following Ath-order.

.l),y
2y,

§ === -ll\.‘.l), A Ve 3‘).4/,,_:_2 - 16‘1/,,_| -T- ;_{.4},,

.—)‘(’./ll +2
= 6hfnsa.
.1‘_)/1‘,.,,+] .

= 60Af,

n+5

Their regions of absolute

. In each case the region of absolute

stability includes the negative 1'(‘:\1 axis.

Higher-order methods of this

type cannot be used. as all BDF methods, with & > 6.

are zero-unstable.

Oﬁg ¢ m b Y14
N

5.3.2.4

Uses of region of absolute stability plots in practice

. l]u question that may arise from the discussion m | 5.3.2.3) is that

x half plane (AAt, A 0) rather tha the

] T wbsolut

A=-

negative real axis (Af 0.\
e For example, we solve equations of the form,

I+

2r =0,
and not equations of the form

I+1r=0, (A= —-1), or r+(14+1)z=0,

e However, let us consider the following second order ODEs

U\XM\Q‘ o5l

A 0\\/\/\\({/& O@\\”AW B2 5= J
M A»ij% v 2O

o However, let us consider the following second order ODEs,

OV\&/( g~0\ G i+

2r+2r =10

e These can be for n\nuph SDOFs (229a)) (i + 2fwd + w?r = f(t)) that are obtained fre
MU + CU + KU = R with f(t) = 0). N
NN

<N R
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e Back to stability analysis of (5.3.2.4]), we observe that in (376a) A = +i and the maximum time step is obtained by finding
the location that a ray with angles 7/2 and 37 /2 intersects region of absolute stability first.
o Similarly for (376b), the roots are —1=1 which make lines of angle 37 /4 and 57 /4. In this case, we need to find the intersections

of the region of ahsnluto stability with rays of these angles.
e Let us consider that we are using a RK4 method whose region of absolute stability versus AAt is shown in the next figure.

We first obtain RK4 stable time stop for i+ x = 0, decoded with color red. The intersections of the roots 41 with
region of absolute stability are both 2.5 (ahovm in the figure). So,

AAL| <25, A=+ = |1]At < 2.5 (377)

and for the damped equation # 4 2i + 2r = 0, the intersection point of rays with angles 37 /4, 57/4 shown in blue in

the figure are both 2.76. So,
IAAt| <276, A=-1%1  =|V2]At<276 - (378)
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Im(AAt)

T4+ Axr =0

777> 4th order explicit
2.76 > ///// ? RK method

, Absolute stability
region

/ /////
<

1 Re{r41)

Note: Having a more stringent time step for the damped system is not due to having damping, rather mainly due to having
larger frequency (w = V2 compared to the damped case).
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e Plots of regions of absolute stability are commonly used to determine stability limits for problems of the type discussed above,
e.g., damped SDOF oscillator that shows up in the modal decomposition of many MDOFs.

Reading source for A-stability

This section briefly discussed the following concept:
e Dahlquist’s theorems that discuss the existence and properties of explicit and implicit LMS methods.
e Concept of region of absolute stability.
e Concepts of zero-stable, A-stable, and stiffly-stable

The following is a list of resources that provide more details on these topics:

N\[5iili and Mayers, 20034 pages 329-341: Sections 12.6 Linear multi-step methods; §12.7 Zero-stability: §12.8 Consistency: §12.9
Dahlquist’s theorems; §12.10 Systems of equations.

o [Hughes, 2012] section 9.3 (only §9.3.1 and 9.3.2)

5.3.3 Stability analysis of one-step multivariate methods
o As mentioned in (5.3) two of the cases that the amplification factor takes a matrix form A are,

1. Value and previous step values of z in (320b): ‘X = [t*4%z ‘x t~3% ...]. This will be the form of ‘X for LMS methods
as we observed in

2. Value and subsequent time derivatives of = in (320b): ‘X = [‘x ‘4 ‘#. Examples be from Newmark and §-Wilson
methods which will be discussed subsequently.
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5.3.3.1 Stability analysis of one-step multivariate methods: Wilson-# method

e The assumption of Wilson-# method is that acceleration varies linearly over the interval ¢ to t +#At, where # > 1 whose range
of having a stable method will be obtained by the stability analysis below.

e Linear acceleration and its first and second integration yields,

l-wri =% + (I+Ali —_ lx‘)l

Ar
7
'"'='x?+'i‘1'+ NNi_lk__
A ( )2Ar
1 24 (o )7!
'+'x=’x+'x.T+I'if + T+ i_li_
6At (379)
in {1
_Bo _1_ L _go- R
arg | = Al % | + Loy A= A,([-l_ﬁ_oz_x_e) I-B—o—x l(_é)
rear " 26 6 2 2 At\ 2
1 1 p& b Be B
2'-———-—— —— ——
‘”(2 %18 6) A‘(' 3) 6
_B_
? AP
w f)". i EB. B
ﬂ—(w’Ar’+wAt+6 ' el 20° At
B
wl

(382)

e Stability requires ecigenvalues of A to satisfy |a;| < 1 and if they have lower geometric multiplicity than algebraic multiplicity
(n& < n?') satisfying |a;| < 1 as discussed in (338).

e For example in the figure below it is shown that in the limit At/T — o (period T' = 27 /w) amplification factor is larger than
one for # > 1.37 necessitating # > 1.37 for unconditional stability.

18 |-

8 = 1.37 for unconditional
1.2 Iy
plA) 10
0.80
0.60'
0.40

0.20

O 4

10 14 18 22 26 30 34
6

Newmark method:
(a,d) and At,

Unconditional stable:

AN
()3)“3 M where (386a)
M_/ M;& Conditional stable:
g( Cdf"‘\\ Salt Al = wAt
f(0-3)+ :—:—(l+‘2(1§—%2'
f/\% VB/\ f\ O = . [- 3 = ) ] . critical normalized sampling frequency (386h)
s—a

e At is normalized time step (also called normalized frequency).

e As usual when the method is conditionally stable w in (386a]) will be the worst (i.e., maximum) frequency that the MDOF
discrete problem (MU + CU + KU = 0) can model max;(w;').

e In practice we replace this with more convenient and conservative value w!", i.e., the highest frequency of individual elements.
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5.4 Practical considerations in using time marching methods

9 g _ W
5.4.1 Control of high frequency numerical noise %‘b QN >L & Q — (m

e In the figure observe spectral radius of different time marching meth- \4\\\3\ \T
ods versus normalized element size. %\% > N
7 Central-difference method
e T = 3= is the period of a given SDOF. \< N\ wm,__,,__ A
; R frowma sy S
e Clearly, db C\poucd central-difference method becomes unstable for @ ) - <«
At/T > =: As we observed in (3')'“ (also_(358)) central difference 0.80 T

method is slahlc ifAtw<2, T=2 => pIAY
e Other methods in the figure are unconditionally stable.

e One very important aspect of a time marching method in these plots

N 020
18,

(387) 0.0001 0.001 0.01 m

for example for Wilson-6 method p.. = 0.8

Z@ 1S \/@Qg s ~vall//0 V\Q/M
Ny

e At/T — oo for individual SDOF's of a MDOF system (w is in fact w/') can happen under two conditions which have important
implications:

1. At — o (Too large of a time step) which means very large time step is taken with respect to T'. Often this can be a
source of large numerical dissipation if At < max;7; (i.e., time step is much larger than the period of the lowest natural
mode) and p., < 1. Having such high time steps can be afforded in unconditionally stable methods. If this condition
occurs, this a sign that too large of a time step from numerical error perspective is taken.

2. T =0 (1.e., w— oc High frequency modes): In this case, we are dealing with high frequency modes of the problem.
Below, we discuss how by optimizing (having smallest) p., we can effectively eliminate high frequency numerical noise.

e Assuming that case one is not of concern (i.e., not too large of a time step is taken to quickly dissipate the solution by the
numerical time integration when p,, < 1) a main concern of a numerical integration if the control of high frequency numerical
noise.

e High-frequency behavior: “Because the higher modes of semi-discrete structural equations are artifacts of the discretization
process and not representative of the behavior of the governing partial differential equations, it is generally viewed as desirable
and often is considered absolutely necessary to have some form of algorithmic damping present to remove the participation of
the high-frequency modal components.” [Hughes, 2012].

e Figure below shows how low frequency part of the solution does not damp out much (At/Ty = 0.01,0.1) as for these low
values of At/T p(A) £ 1. On the other hand, for high(er) frequency content (low(er) T) At/T; = 1,10,1001000 p(A) — px
and these waves are almost entirely dissipated. This is the desired response as we want to maintain the physical part of the
solution and dissipate / filter numerical noise.

AT, = 0.01

] Caloulated displacements
-08 - now smaller than 10™* for
o AtT; = 1.0, 10, 100, 1000
Figure 9.7 Di responsc d with ing &1/ 7 ratio, Wilson € method,

@ = 1.4 [Bathe, 2006
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