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5.4.1 Control of high frequency numerical noise

e In the figure observe spectral radius of different time marching meth-
ods versus normalized element size.

Contral-difference method

e T = 3% is the period of a given SDOF. /—\ Juommmhodﬁ-%.n-}
2

e Clearly, as expected central-difference method hecomes unstable for
At/T > L: As we observed in (357) (also (358)) central difference
method is stable if Atw <2, T = = = At/T i PUA

Other methods in the figure are unconditionally stable.
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e One very important aspect of a time marching method in these plots
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for example for Wilson-f method p.. = 0.8
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Killing high frequency content is welcomed because we observed
before with FEM the error in capturing higher frequency content
increases (because they have a higher "wave number")
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o At/T = oo for individual SDOFs of a MDOF system (w is in fact w!) can happen under two conditions which have important
implications:

1. At — oo (Too large of a time step) which means very large time step is taken with respect to T'. Often this can be a
source of large numerical dissipation if At < max;T; (i.e., time step is much larger than the period of the lowest natural
mode) and p. < 1. Having such high time steps can be afforded in unconditionally stable methods. If this condition
occurs, this a sign that too large of a time step from numerical error perspective is taken.

2. T =0 (ie, w— oo High frequency modes): In this case, we are dealing with high frequency modes of the problem.
Below, we discuss how by optimizing (having smallest) p, we can effectively eliminate high frequency numerical noise.

Assuming that case one is not of concern (i.e., not too large of a time step is taken to quickly dissipate the solution by the
numerical time integration when p.. < 1) a main concern of a numerical integration if the control of high frequency numerical
noise.

High-frequency behavior: “Because the higher modes of semi-diserete structural equations are artifacts of the discretization
process and not representative of the behavior of the governing partial differential equations, it is generally viewed as desirable
and often is considered absolutely necessary to have some form of algorithmic damping present to remove the participation of

the high-frequency modal components.” [Hughes, 2012].

e The control of high frequency noise can be achieved by minimizing p.. to quickly dissipate any high frequency numerical noise
that can be introduced in the solution.

e As an example, we optimize parameters for the Newmark method:

— As was shown in the previous figure § = 1 results in p,. = 1, i.e., no dissipation of high frequency noise.

— We need to choose d > 0 to have py < 1.

~ For a given § we can optimize a such that high frequency dissipation is maximized (i.e., po minimized).

— This condition is created by requiring the eigenvalues of the amplification factor to be complex conjugate values,
( — Remembering for a 2 x 2 amplification matrix A such condition is A} > Ay; cf. (363).

Stability region with
complex conjugate roots
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To have the roots of Newmark method in the dashed region we have the following:

— To ensure that the amplification factors are complex conjugate parameters a, 4 from (| are restricted as:

0<g<1

Unconditional stable: §>

b3

Conditional stable:

WAL < D

(v, §) and At,

Unconditional stable: 2a =4 > + - <&
T

Complex
amplification factor
+ StabiIiR for Newmark method

T

Just stability for Newmark

5>4
where (386a)
Conditional stable: o< %
At = wAt < it
. i
D+ [s-a+e2(6-1)
T critical normalized sampling frequency (386b)
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oL AN o
a3
For\d = 0.9 = a < 0.49. In this case eigenvalues
cate to complex conjugate values, but then past some —— 5
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1,

N ~
‘%@ -a < r\d = 0.9 = a < 0.49. In this case eigenvalues
catc to complex conjugate values, but then past some
At /T value they bifurcate back to higher values. For the minimum ol
a = §/2 for unconditional stability we even have p.. — 1 resulting
in no dissipation for high frequency oscillations (noises). This can

a=045 (

" a =047 1y
‘L be see in cases o = 0.45 and a = 0.47. < . 7 C\(“D
Oe (5+3) — t.
N B a > ———: For § = 0.9 = a > 0.49. In this case cigenvalues of AL
A do not bifurcate but have p.. < 1. The case a = 0.55 is shown. (0=10.9)
3 Newmark methods J -
< For 6 = 0.9 = a = 0.49. This the optimum value: In e ;_\t T . v \
se eigenvalues bifurcate and result in an optimum (minimum)
Pao < 1 for a given 4. W\\M\

Accordingly, in practice to have the best dissipation of higher frequency noise we often set \n =

(3+4)°
1

e There are some other approaches to dissipatte high frequency noise:

1. Artificial damping: Similar to Dy, in (114) in the context of FV methods various types of numerical damping operators

can be added to a numerical method to control high frequency oscillations and other numerical artifacts, However,
depending on the type of numerical method special case should be taken as at times they only damp an intermediate
band of frequencies without significant effect in the all-important high modes.

2. a-method: Hilber-Hughes-Taylor (HHT) method:

5 2
— The approach discussed above with choosixqumrm § > 4 which results in one order loss of accuracy

compared to § = % (first order compared to second order in At). For § = } and a = 4 from (& _,*) vet the scheme
is nondissipative and p.. rendering it ineffective in dissipative hlgh frcquenc‘ noise.
HHT suggested the following modification MU + CU + KU =

MU,: +(1 +n)(‘[7,,-lm:(l +a)KU, 4 — aKU, =R(ths14a):  tat1+a = (1 +a)tny —at, (389)

|

While the MDOF is modified by a coefficient the Newmark update is done as usual by employing the following
approximation: U, ., = U, + At[(1-4)U,, +5_U,,H] and U, = U, + AtU,, + “‘T"[(l - @U" +2aU,, ;] where = %A
a is the usual a parameter that is marked by (.) to distinguish it from HHT a parameter.

~Ifae[-10],0= I=2a and a == l"’ an unconditionally stable, second order accurate scheme results.
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5.4.2 Measures of accuracy: L2 error, numerical dissipation and dispersion <N\ .GQ ()\ S\/\/\ éQ/
e Consider the solution for the undamped second order ODE shown \ U&\, QV\(A
below » @\ P \
af=a0 — C}\
i+ wx=0 ; \ \ &W
C N
=10 T=00, ‘%= -a i \w& C\ea%’&“
(390) o i\
\0
e The cxact solution for this ODE is z(t) = cos(wt). &
- 0\}\""
e The numerical solution may not be able to model the exact wave MmN\ Q&Ov\a

amplitude or period as shown in the figure

e We have the following definitions, igy

Aot \
o €1 /
Amplitude Decay (AD): The amount the amplitude of the l ; @\D /’

deereases relative to the exact solution in one od.
1» t 1 ! ul‘ ion in one period o = vy e BT = r — .
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1. Amplitude Decay (AD): The amount the amplitude of the
wave decreases relative to the exact solution in one period.
Note, the exact solution may actually be dissipative for
example when damping is nonzero #+42‘wi+w?r = 0, yet
we can formalize and separate physical dissipation from
numerical one.

2. Period elongation (PE): The difference between numer
cal period T and exact period 7 = that is 7 r:
Interestingly, we often have the following trend:

(a) Implicit integration = PE > 0: With implicit inte-

gration methods numerical period is often longer T
(shorter frequency @) than the exact period T. Ex-

amples are Wilsan-f, Houbolt, trapezoidal and
conditional stable Newmark methods.
(b) Explicit integration = PE < 0: With explicit inte- Implicit methods increase wave period

gration methods numerical period is often shorter 7' \ )

(longer frequency @) than the exact period T.

¢ More examples are shown in the figure:

1. For Newmark method 6 = §, a < § = 1 corre-

spond to conditional stable regime which as can
be seen in the figure shorten the period / elongate
frequency.

2. On the other hand, implicit (unconditionally sta-
ble) Newmark method for a ; and Wilson and
Houbolt methods elongate the period / shorten
frequency.

| S 5
/’ A f o Implicit integrators:

. éj’ @/ a=1 |) Period gets longer
— T ST
=
|
~ 99 - ot -
g Explicit mtegrations:
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= ||—‘ e f—po N Period gets shorter
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Comparison of Nemark method (0 = %)
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e Consider that we are solving 1D elastodynamic problem
U — c*u 22 = 0 for a double end fixed bar of length L.

e = the exact natural frequencies are w,, = nw.

o Numerical modes wh for an N dof MDOF spatial dis-
cretization MU + KU = 0 take the following form:

1. Consistent mass matrix: wﬁ >itin.

2. Lumped mass matrix: u.'f: < Wn-

e For this 1D problem, we observe that the relative error

5% only depends on how far we are from the number of
modes the MDOF model can capture through n = &.
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o All the way from the continuum level frequencies to semi-discrete MDOF discretization MU +CU+KU = R to its numerical

integration we deal with three groups of frequencies:

1 w
2 wh
o

exact frequencies of the continuum problem.
semi-diserete frequencies are natural frequencies of MDOF FEM discretization MU + CU + KU = R.
" frequencies produced (realized) by time integration of semi-discrete MDOF MU + CU + KU = R.

1. How accurately semi-discrete frequencies are modeled: =,

2. How accurately time-integration models frequencies: =,

ventually accuracy of the numerically integrated ODE in representing periods of waves depends on:

e We want to match time integration methods with appropriate mass matrix option so that the errors from the following two
steps are in opposite directions and to some extend cancel each other out.

e This concept is shown in the next figure.

Consistent mass matrix

MU+ KU=R

semi-diserete MDOF

U gy xx =10
M (N dof temporal ODE)

Lumped (diagonal) mass

MU+ KU =R

. M

Wn 1 W .

| g )
Wi Wi

iy + wzlel = falt)

A
k. Sl | oﬁ/.h.u_/c.ﬁ 2N

.., Houbolt, Wilson-@, trapezoic
unconditionally stable Newmark

lal rule,

N SDOFs, n=1,-++ , N ——gm Time integration of SDOF ODEs
(or direct integration of MDOF ODE)

(n

matrix

n
=?]

wh wh
=n (—=

W Wy

casn /")

f!i(f)
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Ty +w, Tn

=3 Explicit time integration
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e.q., Central difference,
conditionally stable Newmark

Matching (Consistent mass — Implicit TI) / (Lumped mass — Explicit Tz

e Based on the results from previous slide, we make the following conclusions for the choice of mass matrix based on time
integration model:

Y . 2} . . TR . . vh
1. Implicit Integration — Consistent mass matrix: Implicit integration methods often elongate 7% (shorten w”: O 4

which best is matched with consistent mass matrix as it shortens periods T (elongate w:

2. Explicit Integration — Lumped mass matrix:

matrix as it elongates periods T (shorten w: % <1).

(b) In addition use of lump mass matrix + damping C =0

A

=1},

1)

a) Implicit integration methods often shorten 7% (clongate w": 2- > 1) which best is matched with lumped mass
P A% © P

+ explicit method enables a local and trivial linear system

solve. For example, in (247) for central difference method we had M= 31,-,1\‘1 + 5‘37(3 which for C = 0 yielded
M = =M. If further a lumped mass matrix is used the update equation simply becomes U**! = £M' of. (218).

e That is, use of lumped mass matrix for explicit_integration methods not only can result in a local solution

process but also is preferred from numerical error perspective (period elongation error).

o The mass matrix is parameterized with r:

e For

we recover consistent mass, lumped mass, and a higher order

rates for natural modes / frequencies), respectively,

(391)

mass matrix (resulting in higher convergence

1 1
Consistent mass(r = E) Lumped mass(r = 0) High order mass(r = F)
\ 1/ \I
N4
Ap |2 1 Ap |1 0 Ap |51
£ =__ Me=_— = (3923)
6L 2L 121
1 2 01
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e The goal is to optimize » based on 5 and o(Newmark integration parameter).
——PN X
— D

REY sin’(wh/2) Q(Q%&)‘Q’\I\Uj fX)V

\\ 2 5[0 = r(h/A1Y] sin® (@h/2) + (WA}
- b . :
g\séﬁﬁ\& \@N potveat\d \~

Qg N _ 0 moga spetd |

A\ A=\ — b=y (=M M 4 ég
./

~onrarC s b

o In this case the crrors introduced by finite clement spatial discretization, the particular mass matrix and temporal algorithm

all cancel to yield exact results.
o Time step is called the characteristic time step.

o It is interesting to note that red ize of the time step At while holding the mesh length £ fixed can only w

e In this case we converge to the exact solution of the spatially discrete, temporally continuous system (i.e., “mass points and
springs”) rather than the exact solution of u , — c?u ., = 0.

e In more general settings (e.g.,, unequal element lengths, variable material properties, multidimensional problems, etc.), results
obtained by matched methods, such as central differences and lumped mass, will not be exact. However, it is felt that results
obtained by matched methods will generally be superior to inappropriate combinations, such as consistent mass and central
differences [Hughes, 2012].

o For example, results below from [Hughes et al., 1976b] show a perfect example of how optimizing the numerical model pa-
rameters and matching (optimizing) time integration method and mass matrix can result in excellent results.

e This problem demonstrates a contact problem between two dissimilar bars.

e Upon contact there is a sharp transition from traction free state to compressive stress state in the bars.

e Also, when the compressive waves reflect from the free end of the bar(s) they result in transition of the bars from contact to
separation mode which reverses the stress state.

e This is a benchmark problem for checking contact algorithms and solving this problem is not trivial.

e The transitions often result in widespread numerical artifacts and noise in both bars, but we observe very good solutions
herein with just a few elements,
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+ Application to second order temporal ODEs: RK methods are naturally formulated for first order ODEs. Although
one can reformulate the update equations for a second order ODE (e.g., either by directly using Taylor series
expansion of the exact solution or employing the first order ODE update equations) the direct use of RIS methods
to second order ODI g.. elastodynamic problem, is very limited. However, one can express second order (or

i PDEs in time as a system of first order PDEs. In which case, RK method can be directly . Unlike
continuous FEMs where RK mothod~ are nrol\ used, their use is common with discontinuous Galerkin mvthoda cf.
Local DG (LDG) and RKDG methods [Cockburn and Shu, 1998a, Cockburn and Shu, 1998b).

E——= -

Besides RK method (which by the way is restricted because of butcher effect):

Canchy-Kovalewski (CK) / Lax-Wendroff (LW): Achieving high temporal orders of accuracy in time is much more

challenging than in space for time marching methods since the solution is only given at discrete time values as opposed
functions. This is the main source of difficulty in achieving arbitrary high

to spatial representation of solution by basis
temporal orders of accuracy with the aforementioned methods.

A successful approach to circumvent discrete representation of solution in time is Canchy-Kovalewski (CK)
Wendroff approach which involves the following steps:

+ Expanding the solution in time using the Taylor s

* Replacing temporal derivatives with spatial derivatives using the underlying PDE; e.g.

u, —aun =0 (advection equation)

+ For a p;nnn position x (which can correspond to a nodal position in an FEM mesh) obtai from FE s

discretization. Since space is discretize with the more flexible FE method and elements \\1t]1 any desired ::hapc

i‘i@m@ . /

'\M\N\\ o \/\OW& \S R ?%
QV\ Q\Qﬂ(% Q&/%} N

»» for the advection equation

or Lax-

(395)
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function orders can be formulated, the ability of having high order is relatively trivial compared to having high
temporal orders of accuracy with time marching schemes.
+ Finally, by plugging spatial derivatives <~ in (395) and corresponding “—* (which are PDE dependent) in (394) we
formulate a method with arbitrary high order of accuracy in time.
Refer to [De Basabe and Sen, 2010 for the application of CK method to second order elastodynamic problem, and

[Dumbser and Munz, 2005, Dumbser and Munz, 2006] for the application of CK method in the context of discontinuous
Galerkin methods.

/ Other high order temporal integration methods. Some notable methods are:

+ Spacetime FEMs: While spacetime finite element methods are not using a time marching scheme to advance the
e : . - ~ - . . . . ~
2 solution in time (they directly solve space and time with FEM), the expression of the solution in time with FE shape
functions means that arbitrary high temporal orders of accuracy can be achieved with these methods.

*

Methods based on analytical expansion of solution: Consider the problem 11 + Au = 0 where u is a vector and A a
matrix. The solution of this ODE is u(t) = u(t = 0)e~A*. Herein, u can represent the vector of unknowns that can
be obtain by FEM discretization; cf. (226b) ( MU + KU = R) or (227) for temporal first order representation of
(226a) (MU + CU + KU = R). Such approaches and exponential of a matrix, are the basis of achieving arbitrary
high temporal order of accuracy in some methods, e.g., [Fahs, 2012].
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e Control of high frequency numerical artifacts, ;un|7ilu(lc' damping (AD), and period elongation (PE)

(Tr-=T)/T

At)T

a) Spectral radius b) Algorithmic damping ratio ¢) Relative period error

In the figure spectral radius, AD, and PE of various time marching methods is displayed versus the normalized time step
At/T (T = 2= is the period for a SDOF). We make the following observation (for more details, especially on some other
methods displayed in the figure, refer to [Hughes, 2012]): Control of high frequency artifacts and damping of the solution:
The spectral radii of the Houbolt and Park methods approach zero as At /T — oo as is typical of backward-difference schemes.
While p.. = 0 implies that high frequency artifacts are dissipated, the quick transition of p to 0 has adverse effects. These
two methods are seen to affect the low modes (i.e.., At/T = 0.1) too strongly, which means even at moderate time step sizes
all components of the solution including low frequency content can be severely dissipated. The quick approach of p(A) to
zero also manifests itself in high amplitude decay for these methods.

On the other hand, for trapezoidal rule we have p(A) = 1 which is due to the fact that the method is nondissipative. While the
method is second order accurate, having no ability to dissipate high frequeney content (numerical artifacts) is an undesirable
property. As mentioned before, methods such as Hilber-Hughos Taylor (HH T e thod) not only are temporally second
order accurate but provide some dissipation for high frequency content.

Finally, we observe that the Newmark method (a = 0.3025,4 = 0.6) and & method (HHT) have a good high frequency content
dissipation behavior while not being too much dissipative for the lower frequency content; we observe p(A) = 1 for At/T
is small; i.e., for low frequency w (high period T modes) and having po. < 1 ensures high frequency numerical noise gets
dissipated.

In short, the following is a list of properties are deemed desirable for structural dynamic problems (i.e., when first few modes

Read about Rayleigh quotient concept before the class
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