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Why the maximum eigenvalue of individual elements is a conservative estimate for the maximum eigenvalue of a structure?

5.5.1 Maximum bounc 1 of MDOF eigenvalue by its element eigenvalues

The complete background for this proof (including Rayleigh’s quotient) can be found in [Bathe, 2006, Hughes, 2012].
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Read the slides on how mass matrix can have a drastic impact on stable time step:

Lumped mass matrix ~E<) \| W vx\7\ R (NV\J QO\/M
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TABLE 9.5 |Central difference method kritical time steps for some elements:
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“Two-node truss element:
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How does the polynomial order affects the maximum stable time step?

Effect of element order on maximum time step and other considerations

5.5.3
1D bar element we obtain,

e For a lumped mass matrix and

we = 2V 0y, p =2, lumped mass matrix

e Recalling the maximum frequency from (398a) for and lumped mass matrix we have the following,

p=1
le = . lumped mass matrix {\I ‘

jp=2 \ /J
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It's a good starting point in terms of the wavelength that the element can capture.
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e Another common way to express stability limit for different element orders is as,

ST 2 -~ 0
Culp)~“== Hyperbolic PDE,c = wave speed K/\ N Fioe
Atpax = ; where ]/;‘ = — (405)

Cp(p)inl— Parabolic PDE, D = diffusion rooﬂicicn&vk_% X O

hy...i, = is an effective element size based on the polynomial order that represent. This size in 1D is the distance between
element nodes (if uniformly distributed) and in general represents the length-scale of a “wave”, i.e., region with a changed
deflection, that an element can model.

— Cy(p) and Cp(p) are correction factors that depend on,

* Mass matrix option: i.e., lumped mass, consistent mass, etc..

* Temporal integration scheme.

* Underlying numerical method: For example, the same time of estimate can be applied to discontinuous Galerkin
methods, ete. where for example a “mass matrix” (from item 1 above) may or may not exist, and same with the
time integration order (e.g., when spacetime FE methods are used). This can also depend on how many independent
fields are interpolated (one-field versus multi-field) and possibly other details of a numerical method.

Summary

e The stable time step of conditionally stable methods depend on mass matrix option, details of the spatial discretization
method, time integration method, and spatial polynomial order p.

e Instead of the maximum frequency (eigenvalue) of a MDOF system max;(w]'), conservatively the maximum frequency (eigen-
value) of the individual elements w! is chosen in evaluating stable time step.

e The definition, h, .= —m"l and many stability analysis for p > 1 are based on having p half a sine wave 0 — 7 for an order p
element. This is for atdhl}]ln considerations. For accuracy reasons, it is suggested to have at least 10 elements for resolving

a wave segment, e.g., half a sine wave; [Shakib and Hughes, 1991]. fjééd\w \,\

6 Mathematical analysis of finite difference methods
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6.2 Convergence, consistency, and stability for FE methods

e The idea of convergence is having the FD solution for a given initial boundary value problem tend to the analytical one for
any given time, provided that we let the mesh spatial and temporal resolution to zero.

e Again, the proof of convergence for given initial and boundary conditions and PDE is a challenging task as it involves €, §
type limit analysis.

e Instead, as it’s common in numerical solution of dynamic problems, we prove consistency and stability and indirectly prove
convergence based on these two conditions.

§1.4 and §1.5

e Formal definition of convergence, for one-step FD scheme applied to first order PDE, is

Definition 1 A one-step FD scheme approrimating a PDE is convergence if for any solution to the PDE u(x,t) and solution to
FD scheme v}l such that v),, converges to uo(z) as mh converges tdiy then vy convergesito i, £) as (milynk) gonvergesito (#, ¢)

as h.k converge to zero.

o Basically, definition ] asserts that a FD scheme is convergent if for any IC, BC, source term, the numerical solution converges
to the exact solution at any point if mesh grid sizes h,k approach zero. This idea is shown in the following figure from
[Strikwerda, 2004].

L/ \

Figure 1.9. Lax- Friedrichs scheme convergence.
e As mentioned before, it is easier to prove convergence trough consistency and stability conditions.

We generally don't directly prove convergence.
o Consistency is a local condition which assert the finite difference operation is consistent with the underlying differential
operator.
e Two difference between convergence and consistency are
1. Convergence refers to the closeness of solutions while consistency refers to the closeness of differential operator occurring
in the PDE.
. Convergence is a global condition by stipulating that the numerical and exact solutions are close at any point while
consistency only requires the differential operator at a point to be close to the PDE differential operator.

[

Definition 2 Given a partial differential equation Pu = [ and a FD scheme P, ;. = f, the FD scheme is consistent with the PDE
if for any smooth function ¢(x,t)

the convergence is a point-wise condition at any given point (x,t).

Example 1 Proof of consistency for the Forward-Time Forward-Space (FTFS) scheme (source [Strikwerda, 2004] Example 1.4.1),

2

For the one-wave wave equation (26a)) (u, + a(z,t)u . = 0), the differential operator P is 5

9 .
+ azz so that,
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Convergence, consistency, and stability tor FE methods 511

where the derivatives on the RHS are all evaluated at (z,,.t,,), and so,

1 1 2 y b
P),_k =@+ a@ . + ;1\'1_‘.‘” - .—)‘tlllt.'»_ff +0 (1\') +QO “1')
Po— Py = :_1 ¢ ‘.‘ } O (k) 4+ O (h° » as (h.k)—=0
Therefore. the scheme is consistent.

Lax-Friedrich's method

\/\%\

| T\
For the Lax-Friedrichs scheme []ﬁ ) the FD differg '-""‘ii.
f-", ,\! Omst = Pmi
Phy = ¥ 5%
We use the Taylor series, . = Q
= 6 Ehtog + 11%6 00 % Gh06 ee + O (W) V] )

1 )
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Pm+1 — Pm—1

1 ;
2h =02+ ch'b2za +O (h*)
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Example 2 Conditional consistency of the Lax-Friedrichs scheme (source [Strikwerda, 200§] Example 1.4.2),

W

\30

So Py — Pd— 0as h,k — 0; i.e., it is consistent as long as k~'h? also tends to zero.

e Note that some schemes such as Lax-Friedrichs schemes are conditionally stable meaning that h, k must satisfy certain condition
for the consistency pf the method.

e For the Lax-Friedrichs scheme as it is applied to hyperbolic equations we require h oc k (for stability) so the consistency

condition k~'h? — 0 requires h — 0 which is A — 0 which is satisfied. Basically, as long as k does not tend to zero faster
than h? as h — 0 the Lax-Friedrichs scheme is consistent.

Stability:

Definition 4 Stability of temporally first order PDEs: A finite difference scheme Py, v}, = 0 for a temporally first-order PDE is

m

stable in the stability region A if there an integer J such that for any positive time T, there is a constant Cr such that,
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We even have this property for the exact solution when it's dynamically stable @/b

Cﬂ+@k§%:ﬁm (o) = WX ;0\&&\ ¢

@Qﬂj = Ul(@;@
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e The number J refers to the number of steps required in a multi-step method. For example for a 1-step method that only
requires t,, for updating t,,+1 J will be 0, that is only initial data will be used in eq:FD:Stability:FirstOrder.

[le"[} < Cr||°|13, (J =0) in (419) for single-step methods (410)
e Comments on the value Cr
- The most important aspect is that (' only depends on T not & nor h: This means that no matter what grid size is

used the solution at time 7" does not blow-up by for example letting k — 0.

For unstable FD methods by letting & — 0 the FD grid can represent higher frequency content (as will be discussed in
and the limit Cr will grow as k — 0. That is, there is no constant C only dependent on T for unstable methods.
Note that Cr can be larger than one and in fact norm ||v"||;, — ~¢ as n — oo. That is, the solution can tend to infinity.
This type of stability limit (Cr > 1) can arise if the spatial norm of the underlying exact physical solution also tend to
infinity.

- If the solution of the underlying solution is in fact bounded or decaying (as in many physical problems called dynamically
stable; cf. the spatial norm of physical solution does not grow and the FD scheme may have a Cp < 1.

— The stability condition of a numerical method is closely related to the concept of well-posedness or dynamie stability of
a physical system which will be discussed in

— Stability is rarely directly checked. As will be discussed in stability of a FD scheme is often investigated in the
frequency domain. The example shows how stability can be checked directly. \
(411) bé\%@ -

Ccv\gvéwg

Example 3 Direct proof of stability of

a1 n
vm =avy + By

is stable if |a| + |B8| < 1. (source [Strikwerda, 2004] Example 1.5.
This type of update for example was observed in FTBS scheme applied to advection equation (26a) u ( +a(z, t)u . = 0 for constant

a(z,t) = a in (27h): 5-::—1:—‘-“ + a'—:"—_,',—":‘—‘- =0= vitt = (1= k)p, + kv, (cf. (35b)) with k = af being the normalized time
step. Thus, for FTBS scheme a =1 — k and 3 = k. The analysis is as follows,

n
m+1

> >
Z o ? = Z lavy, + Bup, 4 [
m=-o0 ms=-—oo
x
2 . 2
< Y laPnl® + 2laliBlivnlivm. ] + 1Bl
m=-o0
x
( 2
< Y laPRrnl® + lollB] (nl? + vps 7)) + 18P lvm ]
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