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Stability of \ \
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Example 3 Direct proof of stability of %%SK/
%»— < g - (411)

This type of update fur e \nn le wi as nlss( rved in FTBS scheme applied to advection pquation (26a) u , +a(x,t)u_, = 0 for constant
] Pl 1 x

a(z,t) = a in (27H): —-'—L——“* +u—,— =0= v = (1= k)b, + kv, (cf. ($5b)) with k = ”T being the normalized time
step. Thus, for FTBS scheme a =1 -k and 3 =k. Tlu analysis is as fullu\\
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is stable if |a| + |B| < 1. (source [Strikwerda, 2004] Ezample 1.5.1)
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Any easier way to prove stability?

6.3.1 Fourier transformation and Fourier series
e We recall the Fourier transform from (203)),

W) = —])_ / —t = (412a)
Var . o
1 = it

f11)=? flw)e*tdw (412b)
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l- 11 ition 1 i l ]r found meaning in that we can write a function f(¢) as a “summation” of its frequency modes with
I de f(w).

e That is a function f(t) is expressed as a superposition of harmonic waves with different frequencies and different amplitudes.

A very important identity in Fourier analysis is the Parseval’s relation

/ f()*dt = / flw = [|fll2 = || fll2 (413)
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the subscript 2 refers to L2 norm (408) ||ul|, = ‘/j: |u(t)|? dt which for convenience we drop the subscript 2 when there is
no confusion in the type of norm employed.

e The Parseval’s relation is of utmost importance as it says the norm of a function is equal to the norm of its Fourier transform.

e In stability analysis it is often easier to establish the stability of simple harmonic solutions. Subsequently, we use the Parseval’s
relation to establish stability for any form of solution by basically decomposing it into its harmonic parts.

e In the stability analysis of FD methods we are interested in how the spatial (discrete) norm of the solution grows. See for
= o ‘ s Py 2 J 2
example, (107) where |[v"|[n = /A3 |vp,|? and the stability condition (#19) |[v"|[} < Cr 32j_, |[?|[7-
e Accordingly, it is reasonable to apply the Fourier transform to x rather than f.

e By just writing the Fourier transform in z variable rather than ¢ for a function u we express (412) as,

%M "15)=#‘/:1 11(1@(11 o § C/ <—/09/ 00\ (414a)

&/\“\/\ " u(r) = : lu(l{ (414b)
fore ™ =/

+
g R g [E} = [{_

the parameter £ is spatial frequency which is also called wavenmmber. The symbols k and € are often used for it. However,
given that k is used for the time step herein, we use the latter notation for the wavenumber.

o Still, we cannot use the Fourier series analysis and Parseval’s relation for the stability analysis of FD method as the solution
in FD schemes is only provided at discrete points h apart.

— T = o
fpcC \4(0“\&( i) =—=h 3 U

/ LoV
OQ\/L > v}.@e/

— = / » (-'gi“e'(ﬁjdf (415b)

(415a)
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+ However,

what is the physical reasoning of breaking down a discrete solution of spacing h into only wavenumbers in

the range [~ 7. 7] not [—o0, 2] as done in Fourier transformation case in (414b) ( u(x) = 7'2_1_ o a(€)et=deg) 7

hi

# There is a very simple explanation of this fact:

* A grid of spacing h cannot distingnish any wavenumbers higher than 7/h due to aliasing effect. That is for any
higher order wavenumber there is a wavenumber in the interval [—J, | that can exactly capture the same values at
grid points v,,. This is shown in the figure below,

It is easy

0 1 2 3 4 5 6 7 8 9 10
Source: Wikipedia

to see why aliasing occurs, —
,lmb{ﬁ _ amhé a2(gm)w(h/h) _ _imh€ 12(qgm) _ _mhé
€ =e'"™Me = e"™mM¢ =e

e™mh(§+4(27/h) would represent the red line in the figure for & = € + (27 /h) and the blue line the base frequency &.
That is, a base frequency € € [—, #] has the same solution value at all grid points with spacing h for any other larger
frequency outside of [, F] in the form & = € +¢(27/h) (¢ € Z) and this is the physical reasoning of sufficiency of only
having frequencies in the range -, £] in harmonic decomposition of the form of solution with grid values v,,.

In (6:3:1) we used (9™ = cos(2(gm)) + 1sin(2(gm)) = 1.

e The material in this section is restricted to 1D analysis, but without much difficulty all the analysis can be extended to 2D
and 3D spatial domains, a topic not considered herein.

e The

Fourier transform in higher dimensions (d = 2 in 2D and 3 in 3D) is,
() = '1T/ uX)e %% o (416a)
2792 Jpa
u®) = —7 / (&)X (416h)
27%< Jpa

where X and £ are vectors in R? and . is the inner-product operator.

e Fourier series (415) can also be easily extended to 2D and 3D for grids with even different spacings h;, ha. hy which again we
do not pursue them given the similarity of the analysis of 2D and 3D FD problems to 1D ones.

Parseval equality for Fourier function:
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e With this notation (427) g(h&) = g(f) i (I_}» be
_ A %5

g9(0) = gr +141, where gr=(1—=Fk)+ kcos#, gr = —ksinf (428a)

e In (428a) g is written in terms of its real gz and imaginary g; components.

e Now, since we are seeking conditions where |g(#)] < 1 we use its square value,

t
g(0)| = \9‘5[,-'( - j]," <il = ]g/(l))?“‘ = 5]7", + 5[," <1 (429a)

lg(8)* =gk + 9} = (1 —k+kcosf)? + K sin® @

oD e 2 . 21 21
= (1 — 2ksin* 59)‘ + 4k" sin”® :_;H(‘us' §9
. g1 72 . 41 72 . a1 21
= 1 —4ksin® 30 + 4k" sin” -0 + 4k” sin® ;0 cos® 3() =

o)< N A s TT
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19\7)|"= 1 — 4K(1 — K) S~ ~v

\ZeIh QUels TT

(49U)

o 9(-7/2) = (1-Fk)+1k

The image of g(0) for the forward-time ' \1 \/\q\ d
backward-space scheme. /i Q < VR \(Qy\ ()\/\ \\/S { Xﬁ\

When % > 1 the loci of g(#) of goes beyond the unit circle in the complex plane around # = £7 and around those #. This is
for this problem the instabilities initiate from the highest frequency modes k. This corresponds to instable values for k.

The fact that g(#) = 1 for # = 0 is always given if the FD scheme is consistent, as otherwise in the limit of h, k — 0 (relative
to wavenumber §) the FD scheme is not consistent with exact PDE.

Recalling k = (17‘.1 from ) FTBS scheme is conditionally stable for the range k < f—: This clearly matches our numerical
example from and example [3] earlier in this section.
Clearly. in neither of these approaches / examples we have proven that the scheme is unstable for k > ’-:

The next theorem demonstrates that |g(#)|> > 1 for some # for this case where g is independent of k corresponds to instability.
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6.3.4 Theorem on stability of FD methods

Theorem 2 Stability analysis in frequency domain for one-step FD schemes: A one-step FD scheme (with constant coefficients)

is stable in a stability region A if and only if there is a constant K (independent of 0,k and h) such that,

lg(0,.k,h)| <1+ Kk

(432)

with (h,k) € A. If g(0,k,h) is independent of h and k, the stability condition can be replaced with the restricted stability

condition,
l9(6,k,h)| <1

Proof: We have the Parseval’s relation (417) and the definition of g, that

w/h

o1 = 15" = | @)

w/h x/h
= /_ . lg"™ (h. k, k)i (€)|*dg = /_ " |g*" (hé, k. h)||8"(€)Pde  from (424)

Now from (lg(6.k, k)| <1+ Kk) we have,
w/h
7 < [ 1 KRR = (1 + Khy e
—n/h
now for t = nk < T we have n < T'/k. Thus from (1 + a)? < e? for a,3 > 0 we have,
(14 Kk)>™ < (14 Kk)?T/k < ¢2KT

and from and (436) we obtain,

- KT 14
| el | i A

||1"'I"7"J (using Parseval’s relation (417))
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