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We discuss how we can simply plug in simple harmonic solutions with wavenumbers £ € [—7/h, 7/h] in a given FD stencil to directly
HIHI,HI ‘1'11.1131‘ ition tactor g.
The steps of this argument are as follows,

1. Harmonic decomposition of the initial condition(s): First, the IC of the PDE can be written as superposition of
waves with wavenumbers & € [—7/h, 7 /h] following the Fourier series (IJ].’)W).
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The IC can always be written as a sum of harmonic waves (Fourier transform)
The solution at time tn = nk can also be written as a sum of harmonic waves (Fourier transform)

For LINEAR PDEs, the wavenumber i component of the solution at time t_n = nk is simply the solution of
the problem with IC with a harmonic wave.
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Previously, we obtained this relation as follows:

e which can be rewritten as (35b).,
vt = (1 =k)v], + kv] for normalized time step k= u’— (420)
1

'rh

e By taking the Fourier series transform on both sides of (420) and recalling (415b] (m) U = 7— [ "”"ﬁ"(f)df we obtain,
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note that the dependence to time step t,, for values v is shown as superscript for the grid point values and Fourier functions
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e On the other hand, again from the definition of Fourier transform we have,
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e By comparing (421) and (422 (!) we obtain,

" ‘(S)—:uh o' (€) where (423a)

g(h§) == [(1 = k) + ke™ amplification factor (for FTBS method) (423b)

Two more von Neumann examples:
Example 4 Stability of the Laz-Friedrichs scheme (source [Strikwerda, 2004] Example 2.2.4),

e Consider the Lax-Friedrichs FD equation for the advection equation u 4 + au . = 0 from (27d)),
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e The update equation for v],t! is as follows,
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cos ¢ =
o In (451) for ¢ = @ we obtain, g(f) = cos® —1ksinf which gives
[9(8)]> = cos? 0 + K sin? @ (454)

e Since g(#) is explicitly independent from k we need to use the stability con-

dition (lg(#, k, h)| < 1) rather than (432).
o From (454) |g(#)[> < 1 for all k if any only if |k| = |u§| < 1.

. the |

e The figure shows the image of g in the complex plane as # spans [—m, 7] when
the image remains in the unit circle, that is for the case k < k/|a|. e image of £10) for

the Xav-Friedrichs scheme,

¢ The points corresponding to # = 0, £ /2, &7 are given in the equation below
and marked in the figure,

Example 5 Numerical Stability of the Laz-Friedrichs scheme applied to a dynamically unstable problem (source [Strikwerda, 2004)

Example 2.2.3), .

u,4au,—u=0 (456)

e Consider the following problem,

which is an advection reaction equation u , + au , + = 0 with 3 = =1 where 3 is the reaction coefficient.
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Well-posedness: No matter what initial condition is, the solution at time T is bounded by a factor depending ONLY on T (not the form of IC function)
multiplying the IC norm.

The problem above is
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BUT not dynamically stable (it grows to inifinity)

STABILITY MEANS PRESERVING THE WELL-POSEDNESS OF THE
ORIGINAL PDE

\\ \}\(0 m\\ éQkU\( ) Q) L\ IF the PDE is well-posed, we want to maintain that property in
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e Now, going back to the FD discretization of (457)), the FD update equation is,
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e The rest of the analysis is very similar to that of example [d] on the stability of Lax=Friedrichs method without reaction term.
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e The update equation I for v is slightly modified to,
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For kbar <= 1, the numerical solution is stable (numerically we preserve the well-posedness).

6.4 von Neumann analysis for multi-step FD schemes
e Multi-step methods refer to those requiring beyond (earlier) time step values than t,, to obtain values for ¢,, ., solutions.
e Multi-step methods can be encountered,

1. Higher than 1**temporal oder for the PDE.

2. Higher order stencils in time that require beyond (earlier) than time step t,, for updating values for ¢,, ;.

e Below, we provide examples from each category and discuss von Neumann stability analysis using these examples.

6.4.1 von Neumann analysis for leapfrog scheme

e Consider the lo:lpfrug scheme (27¢) for the advectio ation u, + au , = 0,
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solutions to (168) are,
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Leap frog is a conservative method, that for the conservative underlying advection equation the norm of the solution does not decay in time also
under numerical setting.

2. k > 1: In this case 1 — k" sin® < 0 for 7/2 > 6 > sin"'(1/k) (e.g., 8 = 7/2). So \/1 — K sin®9 = 1\/@2 sin®f — 1 for
such #. In this case, |g_| > 1 some @ so the scheme is not stable. For example, for # = 7 we have,

g () = —iksin(r/2) — /1 = Psint(z/2) = =1 (k+ VE-1)>1 (e k)
<\ A =0, = =1On8 ol -1
BECEAERXUARE

We encountered this situation before:
k Ci

M +m=0 s (&=-—.cf (353)) (348¢)
D

= u,k + Eluf"_l + caa
&

[('..(llk +edf ' 4ty = ()l (348d)

o It is casy to verify that all eigenvectors of A have geometric multiplicity of one (¢ = 1). Why?

e That is, if any eigenvalue a; is repeated (n! > 1) it corresponds to the case n

stability of the LMS scheme a; according to stability statement (338].

¢ < n' and it must be smaller than one for

e Accordingly, the stability analysis of LMS scheme is as follows,

la;| €1, if a; is not repeated (n'," = 1) otherwise |a;| < 1, where (349a)

-1

a; are eigenvalues of A, i.e., roots of q,uf" + ('.uf 4+t =0 (349b)
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o The form of general recursive relations will be further discussed in §6.4.3]

e For the moment, we observe beside " = A(£)g™ = A(£)(—1)" there is another solution of the form,

" = B(&)ng", for g=—1 (obtained from ({73} for k =1 and # = +x /2

2)

(474)

o This can be easily verified by plugging this solution in for k = 1,0 = £7/2. That is, for a = 1, a; = 2iksinf = 21,

g = -1

02ﬁn+l + Q]i}" + C(o‘l:’n

e So a general solution for

L= B(&)(n + 1)(=)" + aB()n(-1)" + (=1)B(&)(n — 1)(=1)" "

=B(§)(—1)"_l {(u + l|(—1)2+21u(—1)l —(n - l)} =B {(-n-1)+(2n)+(-n+1)} =0

k=1and ¢# = += 2 takes the form,

(475)

= A(§)g" + B(€)ng" = AE)(—1)" + B(§)n(-1)" (476)

e The appearance of the the factor » in the solution and noting that
|g]l = 1 (so |g|* = 1) mean that leapfrog scheme for & = 1 is not
stable. For # = £x the solution linearly (not exponentially) is
unstable. This type of instability called weak instability as opposed
to strong (exponential) instability that would arise when |g| > 1.
An example of weak instability is shown in the figure.

e Note that for a fixed time T by letting k¥ — 0 and choosing t,, =
nk = T we observe n = T /k — oc for a fixed T and we have n grows
in and multiplies B(€). The proof of instability for £ =1 can
be formally done through Exercise 4.1.5 in [Strikwerda, 2004].

o In this case, as opposed to one-step schemes considered the limiting
value of instability for k itself is not included in stability zone.

e Rather, stability of leapfrog method requires k& = ak/h < 1 and the
method is NOT stable for k=1

k=— <1 for the stability of leapfrog method (477)

That is, 8" (&) = ¢"(h€)?"(€). Plugging this in (488) yields,
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Leapirog weak (algebraic)
instability for k = 1.

g9t + oy 197+ g+ ap =0 (489)

e For a moment, assume that all ¢ roots of g order polynomial in g are distinct. Since for any root g; v" = g_;‘i;" is a solution
any linear combination of these solutions with factors independent on n (e.g., they can depend on £ for example) can be a

solution. So, a solution to can be written as,

"= A} (490)

j=19

where again A; can depend on any parameters that appear in a coefficients in ([188) such as &, # that were present in

and (483).

e Basically, the g recursive relation ({88} will have ¢ unknowns A; that will be obtained from the first ¢ steps of the solution
0 x

9
"

e However, when some roots of are repeated we do not have all dofs A; 1 < j < ¢ present in (490).
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o In such cases, there are some other nontrivial solutions to (488).

e Looking back at the two-step problems in and when had repeated roots for k = 1 (e.g., 1.2 = —1 when
# = £7/2 for the leapfrog method and g; , = 1 or g; 2 = —1 8 = 0, £ for the central time central space scheme in )
we also had a secondary solution of the form v" = Ang"; cf. (0" = A(€)g" + A.(&)ng™ = A(E)(—1)" + A (E)n(—1)™)
and (387) (8" = A(€)g" + A.()ng" = A()(Z1)" + A.(§)n(£1)"), respectively.

o This suggests, that if a root g to [I80) is repeated m times then " p(n)g” will be a solution to (488) for an arbitrary polynomial

p(n) of order m — 1.
e This in fact is through and is formalized in the following theorem.
Theorem 3 Solution to a recursive equation: Consider the g-order homogeneous linear recursive (recurrence) relation,
aqi!"“ +a.,_|i7"+‘--+noiv"-"“ =0, n=0,1;... (491)

with ay # 0, ag # 0 (if the end point coefficients are zero, the relation can be case in a recursive relation with smaller number of
steps) and a; € R and not dependent on n (they can depend on any parameter other than n).
We define the q-order characteristic polynomial,

Pg) =agg? +ag 19" + -+ ag+ag (492)
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