DG2020/01/15

Wednesday, January 15, 2020 11:37 AM

CFEM example

For all the elements k = 1, C = 1, Le = 1

Formulas for ke and me:

$$N = \begin{bmatrix} N_{1}^{e} & N_{2}^{e} \end{bmatrix} = \begin{bmatrix} 1 - \frac{x}{k_{2}} & \frac{x}{k_{2}} \\ W = \begin{bmatrix} N_{1}^{e} & N_{2}^{e} \end{bmatrix} = \begin{bmatrix} 1 - \frac{x}{k_{2}} & \frac{x}{k_{2}} \\ \frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 - \frac{x}{k_{2}} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 - \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 - \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 - \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 - \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} \begin{bmatrix} \frac{1}{2} &$$

$$f = t_{1} + t_{N} - t_{De} = ka_{1} + ma_{2}$$

$$= ka_{1} + ma_{2}$$

h) Rp = q = q.n (cn 20) c) Ru = T - T (cn 20) CREM This is enforced strongly

Generalize b to a DG formulation: DG DG formulations are element centered. So, we write the residuals for

elements. α R := CT + $\overline{V} \cdot q - R$ in e b R := $q - q \cdot n$ cn δe b) Rt = 9-9.0

Now that we have all the residuals we can formulate the DG weak form:

Find the solution in all elements e, subject to the following weak statement:

$$Re$$

 $HweW$ $\int wRi + (w(9h-9.n)ds)$
 $e wRi + (w(9h-9.n)ds)$
 $e whole boundary of e (dep effort
the whole boundary of e (dep effort
the whole boundary of e (dep effort
 $e whole boundary of e (dep effort)$
 $e wrote boundary of e (dep effort)$
 $r = Fems we don't have this term altographic because
by using notal don's 2 pp concept T is continues between
elemended $T = Fon 8DU$ (at noded
 $f(w)$ is the value or a dirivative of w .
 $q = WT$$$

w) is the valle or a directive of w. add this foctor in front of integral Some comments on the choices for f(w): ____)) g W=T 1. f(w) = w weight of temper ature ductivity facture -9.N) l S 2. Make the formulation "energy symmetric" Potential problem If we interpolate the element with 0th order polynomial (that is the 1= solution is a constant in each element) $T_{e_i} = \alpha_i 1$ $\mathcal{M}_{\mathbf{r}}$; - $\sqrt{3-0}$ Cannot enforce continuity of T. good formulat. Nata We need at least p>1 for this optimoffun

Example: DG matrices for the same 3 element problem

