$$
\frac{\partial D_{1}}{T(t)=T(t)} \frac{}{e_{2}} \frac{e_{3}}{e_{N}} \quad \bar{q}_{N}=1 \quad \partial D_{f}
$$

For all the elements $\mathrm{k}=1, \mathrm{C}=1, \mathrm{Le}=1$

$$
L=3
$$

Formulas for te and me:

$$
\begin{aligned}
& N=\left[N_{1}^{e}, n_{2}^{2}\right]=\left[1-\frac{x}{L_{2}}, \frac{y}{L_{2}}\right] \\
& m^{e}=\int_{l} N^{N^{T}} C_{1}^{2} d x=\int_{e}\left[\begin{array}{c}
1-\frac{x}{L_{e}} \\
\frac{x}{L e}
\end{array}\right) C\left[\begin{array}{cc}
1-\frac{x}{L_{e}} & \frac{x}{L_{e}}
\end{array}\right] d x=\frac{C L^{e}}{6}\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right] \\
& K^{e}=\int_{2}^{B^{2}} \not R^{-} B^{e} d x=\int \frac{1}{L_{e}}\left[\begin{array}{l}
-1 \\
1
\end{array}\right]\left[\begin{array}{ll}
-1 & 1
\end{array}\right) d x=\frac{R^{e}}{L^{e}}\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right] \\
& \text { (1) } \dot{n}^{2}=\frac{C L_{e}}{\sigma}\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right) \quad K^{i}=\frac{K}{L^{e}}\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right] \\
& \gamma D_{J_{1}} \frac{M_{1}^{e}-[11]}{e_{1} 1} \frac{M^{e}=\left[\begin{array}{ll}
1 & 2) \\
e_{2} & 2
\end{array} \frac{M_{2}^{i}=\left[\begin{array}{ll}
2 & 3
\end{array}\right]}{e_{3}} 3\right.}{3}
\end{aligned}
$$

$$
\begin{align*}
& k^{e_{1}}=1\left[\begin{array}{cc}
1 & 1 \\
1 & -1 \\
-1 & 1
\end{array} \left\lvert\, \quad k^{e_{2}}=\frac{1}{1} \begin{array}{c}
1 \\
1 \\
-1 \\
-1 \\
1
\end{array}\right.\right] \quad k^{e_{3}}=2\left[\begin{array}{cc}
2 & 3 \\
3 & -1 \\
-1 & 1
\end{array}\right] \\
& M=\left[\begin{array}{lll}
4 & 1 & 0 \\
1 & 4 & 1 \\
0 & 1 & 2
\end{array}\right] \quad K=\left[\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 1
\end{array}\right] \tag{2}\\
& 123
\end{align*}
$$

$$
\begin{aligned}
& e_{1} \operatorname{lnas} f_{n} \neq 0 \quad f_{1}^{e_{1}}=k^{e^{e} a^{e}}+m^{e^{a} a^{e}} \\
& a=\bar{T}\left[\begin{array}{c}
\bar{T}(t) \\
D \rightarrow 0
\end{array}\right]=\left[\begin{array}{c}
\bar{T}(t) \\
0
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
\bar{F}(1) \\
0
\end{array}\right]+\frac{1}{6}\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{l}
\frac{\bar{T}}{}(b) \\
0
\end{array}\right]=\left[\left.\begin{array}{l}
\bar{T}+\frac{1}{3} \overline{\bar{T}} \\
-\bar{T}+\frac{1}{6} \boldsymbol{F}^{\frac{1}{T}}
\end{array} \right\rvert\,\right.
\end{aligned}
$$

$$
\begin{align*}
& \frac{\left.\operatorname{f}^{e^{3}}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \begin{array}{l}
2 \\
3
\end{array}\right]}{T=\left[\begin{array}{c}
T-\frac{1}{6} \\
0^{T} \\
1
\end{array}\right]} \tag{2}\\
& =\left[\begin{array}{l}
N_{1}^{e_{3}} \\
N_{2}^{e_{3}}
\end{array}\right]_{\mid x=3}=\bar{q}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
& k \& M \text { ineqn } 2 \\
& \text { need to solve } \quad M a+K a=F
\end{align*}
$$

Discontinuous Galerkin formulation for heat conduction (one of the several DG formulations for this problem).
a) $R_{i}=C T+\nabla \cdot q-Q \quad$ inside
a) $R_{f}=\bar{q}=q \cdot n$
c) $\underbrace{\text { Ru } T_{1}^{\prime}-T}_{\text {EM } \text { this }}$

Generalize b to a DG formulation: DG formula
elements.
a) $R_{i}=C T T \cdot q-Q$ in e
b) $R_{f}=q_{n}^{x} q_{i n}$ on $b l$
normal

$$
\left(q_{n}\left(q, q_{0}, T, T_{0}, A_{n}, \ldots\right)\right.
$$

One chain $q_{n}^{x}=\left(q+q_{0}\right) \cdot n$ average flux
$\overline{c)} R_{u}=\overrightarrow{T^{-} T} \rightarrow R_{v}=T^{*}-T$
 qua completely

 chr example average flux $T^{\phi}=\frac{T+T T_{0}}{2} \notint_{\frac{T}{2}-T}^{T_{0}-T}=$

Now that we have all the residuals we can formulate the DG weak form:
$\forall W e W \int_{e} \omega R_{i}+\int_{S c} \omega\left(q_{n}^{*}-q \cdot n\right) d s$
(SC) \rightarrow Unlike CFEM, han in don over the whale bound davy if C / def Crow

$$
+\int_{S_{e}} f(w) \underbrace{T^{*}-T}_{R u}) d s=0
$$

in CFEMs we don't have this term altogndwe because by using nodal dots \& ϕ_{p} concept T is continues between elements $T=T$ on $V D U$ (at nodes
$f(u)$ is the value or a dusvative of w.

$$
q=-\sqrt{7} T
$$

$f(m)$ is he value or a duvverite of ω.

Some comments on the choices for $f(w)$:

1. $f(w)=w$

2. Make the formulation "energy symmetric"

If we interpolate the element with 0th order polynomial (that is the solution is a constant in each element)

$$
\begin{aligned}
& T_{e_{i}}=a_{i} 1 \\
& T_{0}=0
\end{aligned}
$$

add this factor in frond of mitegral

$$
W_{e,}=\underline{h}
$$

Nat a yod formulation.
We need

$$
\text { at least } P \geq \mid \text { for the option }
$$ of $f(u)$

Example: DG matrices for the same 3 element problem

$$
\begin{aligned}
& e_{1} \quad e_{2} \quad e_{3} \\
& \text { Constomn sun } \quad T^{4}=a_{1}^{n} 1 \quad T^{a}=a_{1}^{a_{2}} 1 \quad T_{1}^{0}=a_{1}^{b_{3}} 1
\end{aligned}
$$

$$
\begin{aligned}
& \text { Since the CFEM solution was order } 1 \text { (using linear shape functions), we } \\
& \text { want to solve this problem with linear DG elements } \\
& T(x)+a_{1}^{e} N^{\prime}(x)+a_{2}^{e} N^{2}(x) \\
& \begin{array}{r}
N_{1}^{e} \\
=\frac{x_{1}^{e}-x}{L}
\end{array}
\end{aligned}
$$

$N^{N} \& N^{2}$ ore 1 opt it ion for basis f_{01} this pol element.
Instead Ill use

$$
\begin{array}{rl}
l_{x} & T(x)
\end{array}=a_{1}^{e} \phi_{1}(x)+a_{2}^{e} \phi_{2}(x) .
$$

$$
\vec{Q}+\left[\begin{array}{l}
Q_{1} \\
q_{e}
\end{array}\right]=\left[\begin{array}{c}
1 \\
x
\end{array}\right]
$$

