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Discussion points:
Read Arnold 2002 on how breaking the self-adjointness (breaking the symmetry of K matrix) for NIPG and Oden-Babuska method
(which is NIPG with zero alpha) affects their convergence rate (no longer optimal convergence rate)
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In this section we show that for the pure penalty methods and NIPG we can choose
the penalty large enough to reduce the consistency error to the point where it does
not interfere with optimal order convergence. We achieve this by choosing the penalty
parameter 7, proportional to a negative power of h, instead of keeping it bounded
as for the consistent methods. However, this superpenalty procedure tends to make
the DG method behave like a standard conforming method and thus significantly
increases the condition number of the stiffness matrix.

3. Effect of penalty term on condition number
In general adding large penalty values to a formulation (displacement continuity, contact models, ...) we get
bad stiffness conditioning
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Abstract. In this paper, we compare the performance of the main discontinuous Galerkin (DG)
methods for elliptic partial differential equations on a model problem. Theoretical estimates of the
condition number of the stiffness matrix are given for DG methods whose bilinear form is symmetric,
which are shown to be sharp numerically. Then, the efficiency of the methods in the computation of
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4. From this discussion, it appears that LDG method is the best, because it just needs a penalty that scales with 1/h and the fa ctor of it
(eta_0 in table above) only needs to be positive.
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The downside of LDG method is that it's a 2-field formulation (T, q), but as | discussed last time by using lift operators |, r and using the fact
that T* is only a function of T we can condense g out from the global system.

What about beta and gamma terms in LDG method:
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What are beta and gamma? What choices we take when they are nonzero? We already analyzed the LDG method and related it to
IP methods for beta = gamma = 0.




VECTOR *V_LDG, spatialNormal;

V_LDG = &phyConf->pdePseudoTimeMngr.V_LDG;
fldValsPtr->gPropPtr->facet_dForms[0].get_sdxSpaceNormalS(spatialNormal);
double Vn = Product(spatialNormal, *V_LDG);

int sgn = Sign(Vn);

if (sgn ==-1)
{

uAveuPart[e_IndexL] = false;
uAveuFactor[e_IndexL] = 0.0;

gAveqPart[e_IndexL] = true;
gAveqFactor[e_IndexL] = 1.0;

uAveuPart[e_IndexR] = true;
uAveuFactor[e_IndexR] = 1.0;

gAveqPart[e_IndexR] = false;
gAveqFactor[e_IndexR] = 0.0;

}

else if (sgn == 1)

{
uAveuPart[e_IndexL] = true; uAveuPart[e_IndexR] = false;
uAveuFactor[e_IndexL] = 1.0; uAveuFactor[e_IndexR] = 0.0;
gAveqPart[e_IndexL] = false; gAveqPart[e_IndexR] = true;
gAveqFactor[e_IndexL] = 0.0; gAveqFactor[e_IndexR] = 1.0;

}

else

{

uAveuPart[e_IndexL] = true;
uAveuFactor[e_IndexL] = 0.5;

gAveqgPart[e_IndexL] = true;
gAveqFactor[e_IndexL] = 0.5;

uAveuPart[e_IndexR] = true;
uAveuFactor[e_IndexR] = 0.5;

gAveqPart[e_IndexR] = true;
gAveqFactor[e_IndexR] = 0.5;
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DIFFERENT FORMULATIONS OF THE DISCONTINUOUS
GALERKIN METHOD FOR THE VISCOUS TERMS"

CHI-'WANG SHUY

Abstract. Discontinuous Galerkin method is a finite element method using completely discon
tinuous piecewise polynomial space for the numerical solution and the test functions. Until recently
it was mainly used for solving convection problems involving only first spatial derivatives, Hecently
the method has been extended suceessfully to solve convection diffusion problems involving second
derivative viscous terms, In this paper we will use simple examples to illustrate the basic ideas and
“pitfalls” for using the discontinuous Galerkin method on the viscous terms.

Shu_2001_Different formulations of the discontinuous Galerkin method
for the viscous terms.pdf

4. The local discontinuous Galerkin method for the second order dif-
fusion problem. If we rewrite the heat equation (3.1) as a first order system
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How about LDG alternating fluxes

2. The order of accuracy is one order lower for odd k. That is, for odd & the
proof of the sub-optimal error estimate of order & is actually sharp.

Both problems can be cured by a clever choice of fluxes, proposed in Cockburn

and Shu [8]:
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Point 1: order of convergence is optimal (p + 1 for interpolation p) for both T and q for all off and even p

Point 2: stencil is much narrower:) F\/ Q)

d

—n

e Y O )
I act nnint ahnut alternatine fliixes \l—’

DG Page 4



Last point about alternating fluxes
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- Parabolic PDEs: will discuss fluxes later (after HW assignment), basically for parabolic PDEs we don't need alpha term for st ability as long as
we don't want to get steady state solution.

- Also there is a way to find more physical fluxes (see Lorcher paper).

- Comparison of different DG fluxes and an erroneous flux option discussed in
DG_course\Papers\Fluxes\Elliptic+Parabolic\ErroneousParabolicFluxes
Read
Shu_2001_Different formulations of the discontinuous Galerkin method for the viscous terms
Kirby_2005_Selecting the Numerical Flux in Discontinuous Galerkin methods for diffusion problems

Hyperbolic PDEs

Solving this wave equation:
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