DG2020/03/04

Wednesday, March 4, 2020 11:40 AM

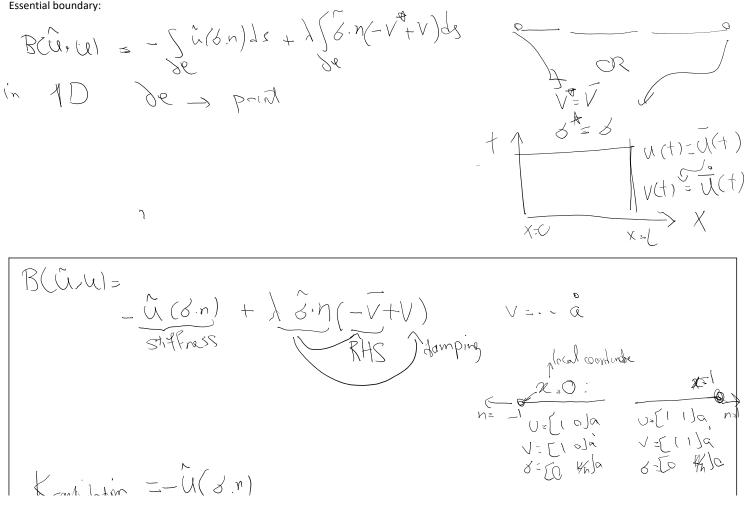
So, last time we worked on the expression of this term:

This time, we there is not the expression of
$$\frac{1}{2}s^{2}$$

This time, we there is not the expression of $\frac{1}{2}s^{2}$
 $\frac{1}{2}s^{2} + \frac{1}{2}s^{2} + \frac{$

If we wanted to solve a block-diagonal system (so it would enable one element solution as a time), a 2 or 3 field formulation for which u and v are independently interpolated would have been needed.

Essential boundary:



DG Page 2

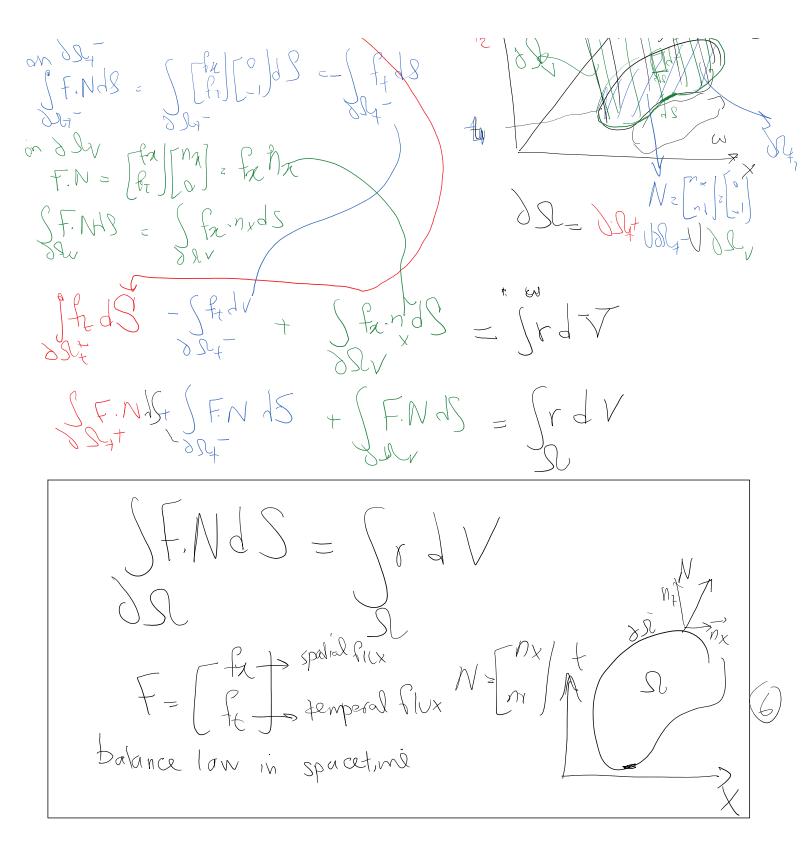
Kontitution =
$$-U(d, n)$$

Kontitution = $-U(d, n)$
Contribution = $V(d, n)$
Contribution = $V(d, n)$
Contribution = $V(d, n)$
France) = $V(d, n)$
France) = $V(d, n)$
France) = $V(d, n)$
Natured boundary
BQUD = $-V(d, n)$
Refs fore
F = [1] F
F(1] δ
Stady atole boundary
Contribution forms
F = [1] F
F(1] δ
France $V(d, n)$
F = [1] F
F(1] δ
Stady atole boundary
Contribution forms
F = [1] F
F(1] δ
France $V(d, n)$
F = [1] δ
Stady atole boundary
Contribution forms
F = [1] δ
F = [1] δ

*

ta=1 sch shirts to

Syr .4.19 temporal flux Balanced spatial flix density NN quantity Jonsily of Lalanced 1em (enorgy, mass,) 4 quantity (1 tensor or by higher that ft W halance 5 spacetime ION -express savice term (If for dv 2 for ds = SFdv I to JW white from to to fat at far + St fands = St fr Iv $\int_{\mathcal{W}} f_t dv \Big|_{t=t_2} - \int_{\mathcal{H}} f_t dv \Big|_{t=t_1} + \int_{\mathcal{W}} \int_{\mathcal{W}} f_{\chi^0} n(dsdt)$ $+\int_{+\pi}^{12}\int_{+\pi}r(dvdt)$ $S = \omega x (t, t)$ JfrdS - Sfrdv + SfrndS osti osti - Sfrdv - (5) $= \langle r d \nabla$ Spacetine flux f= fat Spacetime normal M2+ vector ft) S1 tenser order how N= nt = scalar than ft $\gamma N = \begin{bmatrix} n_2 \\ n_4 \end{bmatrix}^{=1}$ on $\delta L_{4}^{7} = F_{0} N = \begin{bmatrix} F_{1} \\ F_{1} \end{bmatrix} = f_{1}$ SF.NdS = SFAS all mo (Full o d S =) fi



Although we justify the derivation of (6) from (4)(spatial expression of balance law), (6) is a more general statement of balance law and should be the starting point for deriving (4).

What I did has many problems! Specifically, there is no metric in spacetime; we cannot define normal vectors accordingly

Remedies:

- Multiply time axis by a reference velocity (e.g. light wave speed or any other relevant wave speed to
- the problem), then all axes have the unit of space and some of these technical difficulties are removed.
- Language of differential forms: This is for example a common approach in relativity,....

× (Tomth)

t (phi

the problem), then all axes have the unit of space and some of these technical difficulties are removed. - Language of differential forms: This is for example a common approach in relativity,....

m X (Trough)

J

So the expression (6) enables us to consider balance laws for arbitrary shapes in spacetime, which paves the way for formulate FEs in spacetime. \sim

Strong form and jump conditions derived from the balance laws F.N 18 = (r1v nalana $\int a \sim$ re Fist = () (Stiong Х =FRAFRIT = -[F]N =0 CN F=F+F N=N Ed ivergence bolance laws dV= 0 -> R (\mathbf{F}) Ilw addit , z () $= FN_{+}FN_{-}O$ [F] manifold Cn any FFI - FN _ FTN = - (FT-F Some oller sources Call this deriver minus interior trace's of full flix as primp We must start from the balance law. Many times the PDEs are written in a non-conservative way. For example, Navier-Stokes equations may be written by dividing certain equations by β . In that case we cannot even "guess" what the jump conditions corresponding to the original balance law would look like.